kittensies
- 1
- 0
Homework Statement
\phi(x) is in Schwartz space, and {\int|\phi(x)|^2dx=1.
I need to show that (\int_{R^n}|x|^2|\phi(x)|^2dx)(\int_{R^n}|\xi|^2|\phi(\xi)|^2d\xi)\geq \dfrac{n^2}{16\pi^2}
Homework Equations
Heisenberg uncertainty in one dimension:
(\int_{-\infty}^{\infty}|x|^2|\phi(x)|^2dx)(\int__{-\infty}^{\infty}|\xi|^2|\phi(\xi)|^2d\xi)\geq \dfrac{1}{16\pi^2}
Plancherel's theorem, probably: For any function in S(R), ||f||=||\hat{f}||=(\int|f(x)|^2)^{-1/2}
Cauchy Schwartz inequality
Anything else?
The Attempt at a Solution
If I expand the integral, I get
(\int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}(x_1+x_2+...+x_n)|\phi(x_1,x_2...)|^2dx_1 dx_2...d_x_n)
I guess I need to show that this is at least n/4\pi
If I expand the polynomial and decompose, I get
(\int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}(x_1)|\phi(x_1,x_2...)|^2dx_1 dx_2...d_x_n)+(\int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}(x_2)|\phi(x_1,x_2...)|^2dx_1 dx_2...d_x_n)+...+(\int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}(x_n)|\phi(x_1,x_2...)|^2dx_1 dx_2...d_x_n)
But each of the integrals evaluated individually is greater than 1/16\pi \int_{-\infty}^{\infty}1dx_1... dx_{i-1} dx_{x+1}...d_x_n) which blows up into 1/16\pi \Pi_{i\neq j}x_i.I have a feeling that's not what's supposed to happen.
Last edited: