KSCphysics
- 31
- 0
find the surface area of f(x,y)=\sqrt{x^2+y^2} above the region
R=\{(x,y):0\leq f(x,y) \leq 1\}
well.. here's what the answer should be.. \sqrt{2} \ \theta
1. formula for Surface area:
\int_{R} \int \sqrt{1+f_{x}(x,y)^2+f_{y}(x,y)^2} \ dA
2. next i need to find the region:
so if r^2=x^2+y^2
then... r=\sqrt{x^2+y^2}
which means that our region is from
0 \leq r \leq 1
and we know 0 \leq \theta \leq \frac{\Pi}{2}
3. f_{x}(x,y)=\frac{x}{\sqrt{x^2+y^2}} f_{y}(x,y)=\frac{y}{\sqrt{x^2+y^2}}
4. \int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{1+(\frac{x}{\sqrt{x^2+y^2}})^2+(\frac{y}{\sqrt{x^2+y^2}})^2} \ dr \ d\theta
so \int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{2} \ dr d\theta
somehow... something doesn't work... HELP!
R=\{(x,y):0\leq f(x,y) \leq 1\}
well.. here's what the answer should be.. \sqrt{2} \ \theta
1. formula for Surface area:
\int_{R} \int \sqrt{1+f_{x}(x,y)^2+f_{y}(x,y)^2} \ dA
2. next i need to find the region:
so if r^2=x^2+y^2
then... r=\sqrt{x^2+y^2}
which means that our region is from
0 \leq r \leq 1
and we know 0 \leq \theta \leq \frac{\Pi}{2}
3. f_{x}(x,y)=\frac{x}{\sqrt{x^2+y^2}} f_{y}(x,y)=\frac{y}{\sqrt{x^2+y^2}}
4. \int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{1+(\frac{x}{\sqrt{x^2+y^2}})^2+(\frac{y}{\sqrt{x^2+y^2}})^2} \ dr \ d\theta
so \int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{2} \ dr d\theta
somehow... something doesn't work... HELP!