jtleafs33
- 28
- 0
Homework Statement
Evaluate the integral:
\int^{2\pi}_{0}\frac{d\theta}{(A+Bcos(\theta))^2}
a^2>b^2
a>0
The Attempt at a Solution
First, I convert this to contour integration along a full sphere in the complex plane.
I let:
z=e^(i\theta)
dz=ie^(i\theta)
d\theta=-idz/z
cos(\theta)=(z+z^-1)/2
Now, substituting back into the integral, I drop the integral sign for now and just work on the integrand:
=\frac{-idz}{z(a+\frac{bz+bz^-1}{2})}
=\frac{-idz}{z(\frac{2a+bz+bz^-1}{2})}
=\frac{-4idz}{z(2a+bz+bz^-1)^2}
=\frac{-4idz}{b^2z^3+4abz^2+4a^2z+2b^2z+4ab+\frac{b^2}{z}}
And from here I am stuck on how to find the poles of this function. I want to use the residue theorem to evaluate this integral, but like I said I'm stuck here.
Last edited: