Help I'm in college and have forgotten everything

  • Thread starter Thread starter KingNothing
  • Start date Start date
  • Tags Tags
    College
KingNothing
Messages
880
Reaction score
4
Hi. I am in college and have forgotten everything about how to solve indefinite integrals.

Even very simple problems give me trouble, such as:

int( y^3 * sqrt(2y^4 - 1) ) dy

So how in the world do you find the answer? The Antiderivative? Please go through this step-by-step, I need a good jumpstart to get myself in the right frame of mind again.
 
Physics news on Phys.org
So you have \int y^{3}\sqrt{2y^{4}-1} dy. Let u = 2y^{4} -1, then du = 8y^{3} dy. But there is only a y^{3} dy available so we have to multiply the integral by \frac{1}{8}:

\frac{1}{8} \int u^{\frac{1}{2}} du = \frac{1}{12}(2y^{4}-1)^\frac{3}{2} + C
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top