Help in deriving series expansion of Helmholtz Equation.

yungman
Messages
5,741
Reaction score
294
Orthogonality of spherical bessel functions

Homework Statement



Proof of orthogonality of spherical bessel functions

The book gave
\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi=\frac{a^{3}}{2}j^2_{n+1}(\alpha_{n+\frac{1}{2},j})
For (n=n'), (j=j') and (m= m')

I got only
\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})

Homework Equations



Helmholtz equation: \nabla^2 u(r,\theta,\phi)=-k u(r,\theta,\phi) Where u_{n,m}(r,\theta,\phi)=R_{n}(r)Y_{n,m}(\theta,\phi)

Where Y_{n,m}(\theta,\phi)=\sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} P_{n}^{m}(\cos\theta)e^{jm\phi} is the Spherical Harmonics.

And R_{n}(r)=j_{n}(\lambda_{n,j} r)=\sqrt{\frac{\pi}{2\lambda_{n,j} r}} J_{n+1/2}(\lambda_{n,j} r) (1) is the Spherical Bessel function.


Orthogonal properties stated that

For 0\leq r \leq a where R(0) is finite and R(a)=0:

R(a)=0\Rightarrow\; \lambda{n,j}=\frac{\alpha_{n,j}}{a}

\int_{0}^{2\pi}\int_{0}^{\pi}Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;d\theta d\phi=0 For (n\neq n') and (m\neq m')

\int_{0}^{2\pi}\int_{0}^{\pi}Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;d\theta d\phi=1 For (n=n') and (m= m')(2)

And \int_{0}^{a} r J_n^2(\lambda_{n,j} r)dr=\frac {a^{2}}{2}J_{n+1}^2(\alpha_{n,j}) (3) where \alpha_{n,j} is the j zero of the Bessel function.


The Attempt at a Solution



For (n=n'), (j=j') and (m= m')

\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi=\int_{0}^{a} j_{n}^{2} (\lambda_{n,j}r)dr\;\int_{0}^{2\pi}\int_{0}^{\pi}|Y_{n,m}(\theta,\phi)|^{2}\sin\theta \;d\theta d\phi=\int_{0}^{a} j_{n}^{2} (\lambda_{n,j}r)dr

As the two have different independent variables and from (2), \int_{0}^{2\pi}\int_{0}^{\pi}|Y_{n,m}(\theta,\phi)|^{2}\sin\theta \;d\theta d\phi=1



Using (1), (3)
\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{(n,j)}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi = \int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr= \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r

R(a)=0\;\Rightarrow\;\lambda_{(n,j)}=\frac{\alpha_{(n+\frac{1}{2},j)}}{a} as \alpha_{(n+\frac{1}{2},j)} is the j^{th} zero of J_{n+\frac{1}{2}}(\lambda_{(n,j)})

\frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r= \frac{\pi}{2\lambda_{(n,j)}} \frac{a^2}{2}J_{n+\frac{3}{2}}(\alpha_{(n+\frac{1}{2},j)})=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})

I am missing the a. Thanks
 
Last edited:
Physics news on Phys.org
I already find proof that for 0\leq r \leq a where R(0) is finite and R(a)=0:

\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{(n,j)}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi = \int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr

So all I need to proof is
\int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr=\frac{a^{3}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})


But as in the last post:
\int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr= \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r

R(a)=0\;\Rightarrow\;\lambda_{(n,j)}=\frac{\alpha_{(n+\frac{1}{2},j)}}{a} as \alpha_{(n+\frac{1}{2},j)} is the j^{th} zero of J_{n+\frac{1}{2}}(\lambda_{(n,j)})

\frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r= \frac{\pi}{2\lambda_{(n,j)}} \frac{a^2}{2}J_{n+\frac{3}{2}}(\alpha_{(n+\frac{1}{2},j)})=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})

I am missing the a. This time, it's a lot simpler and more focus, please help me on this.

Thanks
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top