- #1
n_ds
- 11
- 0
Hi
I am working on an assignment and I honeslty am completely baffled with this question. I have no idea how to go about trying to figure it out as its purely conceptual based. If anyone has any info that might help, I am all ears. The problem is as follows and I am attaching the diagram as well if it helps:
A block of mass m slides down an inclined plane into a loop-the-loop of radius r . (a) Neglecting friction, what is the minimum speed the block must have at the highest point of the loop in order to stay in the loop? [Hint: What force must act on the block at the top of the loop to keep the block on a circular path?] (b) At what vertical height on the inclined plane (in terms of the radius of the loop) must the block be released if it is to have the required minimum speed at the top of the loop?
I appreciate any help you can offer.
Thanks
TN
I am working on an assignment and I honeslty am completely baffled with this question. I have no idea how to go about trying to figure it out as its purely conceptual based. If anyone has any info that might help, I am all ears. The problem is as follows and I am attaching the diagram as well if it helps:
A block of mass m slides down an inclined plane into a loop-the-loop of radius r . (a) Neglecting friction, what is the minimum speed the block must have at the highest point of the loop in order to stay in the loop? [Hint: What force must act on the block at the top of the loop to keep the block on a circular path?] (b) At what vertical height on the inclined plane (in terms of the radius of the loop) must the block be released if it is to have the required minimum speed at the top of the loop?
I appreciate any help you can offer.
Thanks
TN