Help with Calculating Planet's Orbital Period

AI Thread Summary
A user seeks assistance in calculating the orbital period of a hypothetical small planet located eight times further from the Sun than Earth. The discussion revolves around applying Kepler's Third Law, which states that the square of the orbital period (T) is directly proportional to the cube of the semi-major axis (R) of its orbit. By substituting R = 8 AU into the formula T^2 ∝ R^3, the user derives that T^2 equals 512, leading to T being approximately 16√2 years. The calculation is confirmed as correct, concluding the discussion with a sense of accomplishment.
tinksy
Messages
5
Reaction score
0
hi, could someone please help me with this problem??

If a small planet were discovered with a distance from the sun eight times that of the Earth, what would you predict for its period in (Earth) years. (i.e. how many times longer would it take to go round the sun than the Earth does.)
 
Last edited:
Physics news on Phys.org
i will not give you the answer straight away, but here's the hint---
get orbital velocity v as a function of radius r

dynamics of the system(*) :

from Newton's second law and law of gravitation,
(m*v^2)/R = (G*M*m)/R^2


get v(r) and substitute in the kinemetical relation which you got correct,that is, T=2(pi)r/v

this will give you T(r) which is usually called "kepler's third law".


*assumption: all orbits are circular

justification : though the orbits that actually elliptical ,the eccentricity is very small.(dont worry if you don't understand this,take this as a side remark).

cheers :smile:
 
Last edited:
thanks teddy...

could u tell me if I'm right?

i've used kepler's law T^2 (directly proportional to) R^3
so if R = 8R (as for Earth, R = 1AU so for the planet, R = 8AU)
kepler's law: R^3/T^2 = 1
therefore, T^2 = 8^3/1
so T = (root)512 = 16(root)2 ...? is that correct?
 
yup,its right.
bye :smile:
 
yaaaaaay! thanks
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top