kcirick
- 54
- 0
Question:
A particle of mass m moves in 1-D infinite square well. at t=0, its wave function is \Psi\left(x,t=0\right)=A\left(a^{2}-x^{2}\right). Find the probability that the particle is in the energy eigenstate E_{n}. Does the probability change with time?
What I have so far:
So far I just found the normalization constant for the wave function at t=0:
\int|\Psi\left(x,t=0\right)|^{2}dx=1
...A=\frac{1}{4}\sqrt\frac{15}{a^{5}}
So we have \Psi\left(x, t=0\right)=\frac{1}{4}\sqrt\frac{15}{a^{5}}\left(a^{2}-x^{2}\right)
Now, because this is infinite square well, \Psi=0 at the boundary. From that, we can find out the energy eigenstate:
E_{n}=\frac{n^{2}\hbar^{2}\pi^{2}}{8ma^{2}} (Derived in class)
But what to do from there? I don't know...
A particle of mass m moves in 1-D infinite square well. at t=0, its wave function is \Psi\left(x,t=0\right)=A\left(a^{2}-x^{2}\right). Find the probability that the particle is in the energy eigenstate E_{n}. Does the probability change with time?
What I have so far:
So far I just found the normalization constant for the wave function at t=0:
\int|\Psi\left(x,t=0\right)|^{2}dx=1
...A=\frac{1}{4}\sqrt\frac{15}{a^{5}}
So we have \Psi\left(x, t=0\right)=\frac{1}{4}\sqrt\frac{15}{a^{5}}\left(a^{2}-x^{2}\right)
Now, because this is infinite square well, \Psi=0 at the boundary. From that, we can find out the energy eigenstate:
E_{n}=\frac{n^{2}\hbar^{2}\pi^{2}}{8ma^{2}} (Derived in class)
But what to do from there? I don't know...