Help with Limits Homework: Evaluate sqrt(tan3x)+sqrt(sin2x)/sqrt(tan2x)

  • Thread starter Thread starter EL ALEM
  • Start date Start date
  • Tags Tags
    Limits
EL ALEM
Messages
25
Reaction score
0

Homework Statement


evaluate the lim as x->0 of [sqroot(tan3x)+srroot(sin2x)]/sqroot(tan2x) WITHOUT using L'Hospital's Rule
Answer is sqrt3/2 + 1

This is in the exam review for my class, and I am having a hard time getting started on this one. Thanks in advance.


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
i would divide it into 2 separate limits & try some trig angle sum indentities
 
thanks! ill try it out.
 
Last edited:
ok tried it, but I am having trouble b/c of the sqr root
 
\lim_{x\to 0} \frac{\sqrt{tan3x}+\sqrt{sin2x}}{\sqrt{tan2x}} <br /> = \lim_{x\to 0} \left \sqrt{\frac{tan3x}{tan2x}} +\sqrt{\frac{sin2x}{tan2x}}

so all the operations should be within the sqrt's
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top