Help with spring constant units

Click For Summary

Homework Help Overview

The discussion revolves around determining the spring constant (ks) using both static and dynamic methods. The original poster describes measuring the displacement of a spring under various masses and grappling with the implications of including gravitational acceleration (g) in their calculations. The problem involves understanding the relationship between mass, displacement, and the spring constant in the context of Hooke's law.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the meaning of the variable g in the context of the spring constant equation. There are questions about the units involved and how to convert measurements to SI units. The original poster attempts to clarify their understanding of the slope of the graph and its relation to the spring constant.

Discussion Status

Some participants provide guidance on interpreting the equations and suggest plotting mass against extension to clarify the relationship. There is an ongoing exploration of how to calculate errors in the dynamic method, with participants questioning the signs and values of their calculations. Multiple interpretations of the equations and their implications are being discussed.

Contextual Notes

There is a noted confusion regarding the instructions related to the variable g and its role in the calculations. The original poster expresses uncertainty about how to handle units and errors in their calculations, indicating a need for further clarification on these points.

NewSoul
Messages
14
Reaction score
0

Homework Statement


Part 1 (static method): We measured the displacement of a spring (in cm) after adding and subtracting masses (in g). The spring was placed in a vertical position. I am supposed to find the spring constant ks.

Part 2 (dynamic method): We did something similar to the above, but we lifted the spring a bit so it would bounce. We then counted the number of oscillations of the spring for 20 seconds each time we changed the masses put on the spring. I am then supposed to find kd.

Homework Equations


Hooke's law: F = kx
units of k = N/m (kg/s2)
ks = Sg

The Attempt at a Solution


I created a graph and found S + ΔS = 25.3 ± 0.10 g/cm

However, it's the equation ks = Sg that's messing me up. My instructions don't tell me what I'm supposed to do with g. I have no idea why it's stuck in there. According to this equation, ks ± Δks = 25.3 ± 0.10 g2/cm, but that doesn't seem to make any sense. How am I supposed to end up with the units of kg/s2 when I won't have any of those units until part 2? And if these are not the units I'm supposed to use, how do I know if I do have the correct units?
 
Physics news on Phys.org
My instructions don't tell me what I'm supposed to do with g.
Don't you have an equation that tells you what to do with it?

How am I supposed to end up with the units of kg/s2 when I won't have any of those units until part 2
But you have all those units right there ... what are the units of g?

S is the slope of the graph for part 1?
It looks like you plotted mass on the vertical (y-axis) and extension on the horizontal (x-axis).
Is that correct?

Why not convert S to SI units - then use the standard value for g in SI units?
 
Simon Bridge said:
Don't you have an equation that tells you what to do with it?

But you have all those units right there ... what are the units of g?

Ahh...it didn't mention in the instructions, but I just realized that g must mean the acceleration due to gravity. Gah! I knew it was something simple! With multiplying all of this by gravity, I end up with a much nicer 24.9 ± 0.10 kg/s2. Thanks!

S is the slope of the graph for part 1?
It looks like you plotted mass on the vertical (y-axis) and extension on the horizontal (x-axis).
Is that correct?
Yes, you are correct.

------

Perhaps you can help me in calculating an error for part 2? Or do I have to make a new thread?

Essentially...

My equation is kd = (4π2)/S. (This is a new slope with s2 on the y-axis and g on the x-axis.)
From the first equation, I found kd = 24.1 kg/s2.

I also have an equation for a function f(x) = Cxn, then... Δf/f = Cn(Δx/x). Δf is the error, C is a constant, and Δx/x is the fractional error in x.

Therefore, Δf must equal fCn(Δx/x). Now, it seems to me that this means Δkd = kd(4π2)(-1)(ΔS/S). However, this would cause Δkd to be -0.00190973753, which doesn't make sense to me. Shouldn't it be a positive number?

So it seems then that kd ± Δkd = 24.1 ± 0.0 kg/s2.
 
NewSoul said:
Ahh...it didn't mention in the instructions, but I just realized that g must mean the acceleration due to gravity. Gah! I knew it was something simple! With multiplying all of this by gravity, I end up with a much nicer 24.9 ± 0.10 kg/s2. Thanks!

It sounds like you were following instructions without understanding the physics behind them.

When you hang a mass off the end of the spring, the the spring pulls on the mass with F=kg, and the mass pulls down with F=mg, so that mg=kx.

If you plot m vs x, you get a line with equation: m=(k/g)x
You could have plotted mg vs x, which would make the slope k.
Perhaps you can help me in calculating an error for part 2? Or do I have to make a new thread?

Essentially...

My equation is kd = (4π2)/S. (This is a new slope with s2 on the y-axis and g on the x-axis.)
From the first equation, I found kd = 24.1 kg/s2.

I also have an equation for a function f(x) = Cxn, then... Δf/f = Cn(Δx/x). Δf is the error, C is a constant, and Δx/x is the fractional error in x.

Therefore, Δf must equal fCn(Δx/x). Now, it seems to me that this means Δkd = kd(4π2)(-1)(ΔS/S). However, this would cause Δkd to be -0.00190973753, which doesn't make sense to me. Shouldn't it be a positive number?

So it seems then that kd ± Δkd = 24.1 ± 0.0 kg/s2.

if you have a measurement ##x\pm\Delta x##, and ##z=1/x##, what is ##\Delta z##?
Clearly it is not zero! That your problem?

It sounds like you are using equations without understanding the physics behind them.

well: xz=1 so $$\frac{\Delta x}{x}+\frac{\Delta z}{z}=\frac{\Delta 1}{1}\\
\Rightarrow \frac{\Delta x}{x}=\frac{\Delta1}{1}-\frac{\Delta z}{z}\\
\Rightarrow\frac{\Delta x}{x}=-\frac{\Delta z}{z}$$ ... since there is no uncertainty on a constant: Δ1=0.
What this does is tell you that you are right - it's not just you using the wrong equation.
It is important that you understand the equations that you use.

So - using your understanding of errors, how would you handle it?
What is the minus sign telling you in this case?

Hint: The error is always written out as ##\pm## - why?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
1K
Replies
3
Views
2K