opticaltempest
- 135
- 0
I need to use Taylor's Theorem to obtain the upper bound for the error of the approximation on the following
<br /> e^{\frac{1}{2}} \approx 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}}<br />Here is an example problem in the textbook I am following.
http://img157.imageshack.us/img157/8564/100027rh.jpg Here is my work. Am I on the right track?<br /> e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}} + R_3 \left( {\frac{1}{2}} \right)<br /><br /> e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}} + \frac{{f^4 (z)}}{{4!}}\left( {\frac{1}{2}} \right)^4 <br />where 0 < z < \frac{1}{2}
f^4 (z) = e^z<br /> \frac{{e^0 }}{{4!}}\left( {\frac{1}{2}} \right)^4 < \frac{{e^z }}{{4!}}\left( {\frac{1}{2}} \right)^4 < \frac{{e^{\frac{1}{2}} }}{{4!}}\left( {\frac{1}{2}} \right)^4 <br />
So the upper bound for the error on the approximation of \[<br /> e^{\frac{1}{2}} is
<br /> \frac{{e^{\frac{1}{2}} }}{{4!}}\left( {\frac{1}{2}} \right)^4 = \frac{{e^{\frac{1}{2}} }}{{384}} \approx 0.004<br />
<br /> e^{\frac{1}{2}} \approx 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}}<br />Here is an example problem in the textbook I am following.
http://img157.imageshack.us/img157/8564/100027rh.jpg Here is my work. Am I on the right track?<br /> e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}} + R_3 \left( {\frac{1}{2}} \right)<br /><br /> e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{{\left( {\frac{1}{2}} \right)^2 }}{{2!}} + \frac{{\left( {\frac{1}{2}} \right)^3 }}{{3!}} + \frac{{f^4 (z)}}{{4!}}\left( {\frac{1}{2}} \right)^4 <br />where 0 < z < \frac{1}{2}
f^4 (z) = e^z<br /> \frac{{e^0 }}{{4!}}\left( {\frac{1}{2}} \right)^4 < \frac{{e^z }}{{4!}}\left( {\frac{1}{2}} \right)^4 < \frac{{e^{\frac{1}{2}} }}{{4!}}\left( {\frac{1}{2}} \right)^4 <br />
So the upper bound for the error on the approximation of \[<br /> e^{\frac{1}{2}} is
<br /> \frac{{e^{\frac{1}{2}} }}{{4!}}\left( {\frac{1}{2}} \right)^4 = \frac{{e^{\frac{1}{2}} }}{{384}} \approx 0.004<br />
Last edited by a moderator: