# Help with Venus Transit AU calculations

• YarnJunior
In summary: Solar parallax is the angle the Sun makes with respect to Earth's axis of rotation. It's measured at a single point on Earth, and is used to calculate the distance to nearby stars. However, in this case, because you're measuring between two observers, the angle you measure is not the same angle as the one your friend Observer A is measuring. Instead, you're measuring the angle between the line from Observer A to the Sun and the line from Observer B to the Sun.
YarnJunior
Hello!

So I've been looking at making a decent calculation of the AU from the 2012 transit. As you can see from the first picture (Taken with the South Pole at the top), this is the method I'm using from the following video:

I use 2*(Pi)/Period of Earth to calculate the angular speed from two points. Afterwards, we multiply that by the change in time to get the angle. Multiplying that by the distance of the Earth from the sun gives us the arc length, which, added to the Diameter of the Earth, equals 2*(Pi)*Change in Time/Period of Venus. Rearranging this equation gives us the AU.

So I have a lot of questions. But please remember that I kinda had to dig a lot of information up myself and have very little experience with astronomy or astrophysics, so if you see something that makes absolutely no sense I apologize in advance. Anyways:

1. I'm not QUITE sure why we add the diameter of the Earth in this case? I know it's the distance between observations, but in this case we need the distance of the Earth between the two points of observation, not necessarily the diameter of the Earth, right?

2. What is the Change in Time exactly? I assume it's the difference between the time for external egress to external ingress for Observers A and the time for external egress to ingress for Observers B. This is usually a 5-13 minutes, right?

3. Where do we take these measurements? At which points on Earth do we need to record the transit for the needed data.? Other solutions I've seen take into account solar parallax, but, from my understanding, they are measured on the same longitude. In this case, we need to have measuring on the same latitudes with very different longitudes, right? Because the measurement is between the first people that see the transit and the last people that do. Sadly, I remembered that the Earth is inclined. So I'm not quite sure what to do at this case.

Anyways, that's basically it. I'm really sorry for the ignorance here but I am very new to this and am having a little bit of trouble understanding everything.

Thanks for the help!

#### Attachments

• Screen Shot 2015-07-31 at 12.05.50 AM.png
19.3 KB · Views: 463
Hello YarnJunior

The two observations you're making both measure the one moment when the limb of Venus first touches the limb of the Sun as the video shows at around 1:40.
Hence:
YarnJunior said:
1. I'm not QUITE sure why we add the diameter of the Earth in this case? I know it's the distance between observations, but in this case we need the distance of the Earth between the two points of observation, not necessarily the diameter of the Earth, right?
You're making the two measurements on two opposite sides of the Earth. In the time between the measurements the Earth will have moved in orbit by the arc length ##\frac{2\pi}{T_E} \Delta t##. On top of that distance, you've moved to the other side of the planet to make your second measurement, so you, the observer, have traveled more than just what the Earth did. You're farther from the point of your first measurement by one diameter of Earth.
Notice that for the case of calculations involving Venus as shown in the video, both measurements are for the same side of the planet (the lines of the triangle both touch the same side), so the distance does not include Venus' diameter.

YarnJunior said:
2. What is the Change in Time exactly? I assume it's the difference between the time for external egress to external ingress for Observers A and the time for external egress to ingress for Observers B. This is usually a 5-13 minutes, right?
The difference is the difference between times at which you make the two measurements - one on the one side of the Earth, and the other sometime later on the other side of the Earth. Remember that the event of Venus touching the limb of the sun happens at different times for different observers. You're measuring this difference for the two selected observers at opposite sides of the planet.
This is the single instant of Venus touching the Sun's limb - the time for the planet to pass the limb does not concern you (if that's what you meant).

YarnJunior said:
3. Where do we take these measurements? At which points on Earth do we need to record the transit for the needed data.? Other solutions I've seen take into account solar parallax, but, from my understanding, they are measured on the same longitude. In this case, we need to have measuring on the same latitudes with very different longitudes, right? Because the measurement is between the first people that see the transit and the last people that do. Sadly, I remembered that the Earth is inclined. So I'm not quite sure what to do at this case.
The measurements as depicted in the video should be taken from points where the ecliptic (Earth's orbital plane) bisects the globe of Earth. Only then you can be sure that the additional distance between the two observations is equal to the Earth's diameter.
These will be both lying on a line passing through the centre of the Earth. 31/05 is near the summer solstice, so the two points would be near the equator.

It is possible to make corrections for other latitudes and longitudes with some use of trigonometry, but that's more unnecessary work.
The two observations at the opposite sides of the Earth were chosen specifically to make things simpler.

does Venus not bend light like the sun does? And what about Earth's effects on light does nothing like that have to be taken into account ?

Good question. there's a formula for the size of that effect, which depends on the mass. In the case of Earth and Venus the deflection angle would be too small to detect---to small to be taken into account. I'll try to find the formula. You could use it to see for yourself how small the angle would be.

As I recall the formula involves calculating a small distance r = 4GM/c^2
which would be about 6 kilometers for the sun.
And then the deflection angle, in radians, is something like r/R where R is how close to center the light ray passes.

But I should check that to make sure I'm not misremembering.

Yeah, that's right:
https://en.wikipedia.org/wiki/Gravi...tion_in_terms_of_space.E2.80.93time_curvature

You can check in the case of the earth, if M is mass of Earth and R is radius of Earth the angle would be too small to measure
When I paste this into google and press enter
"((4 * G * mass of Earth) / (c^2)) / radius of Earth =
2.78122848 × 10-9"

It knows the Newton G and the mass of the Earth and the speed of light etc. so I don't have to look anything up, so the angle would be 3 billionths of a radian. too small to measure.
Light bending by the atmosphere would be significant, but not gravitational bending.

Last edited:
elusiveshame

## What is the AU value of Venus Transit?

The AU (Astronomical Unit) value of Venus Transit is approximately 0.72 AU. This means that Venus is about 0.72 times the distance from the Sun to Earth during its transit.

## How can I calculate the AU value of Venus Transit?

The AU value of Venus Transit can be calculated using the following formula: AU = (2 * pi * d) / T, where d is the distance between Earth and Venus, and T is the time it takes for Venus to complete one orbit around the Sun.

## What is the distance between Earth and Venus during its transit?

The distance between Earth and Venus during its transit can vary, as Venus has an elliptical orbit. However, on average, it is approximately 41 million kilometers (25.4 million miles).

## How long does it take for Venus to complete one orbit around the Sun?

Venus takes approximately 224.7 Earth days to complete one orbit around the Sun. This is equivalent to about 0.62 Earth years.

## Can I use the same method to calculate the AU value for other planetary transits?

Yes, you can use the same formula to calculate the AU value for other planetary transits. However, you would need to know the distance and orbital period of the planet in question.

• Astronomy and Astrophysics
Replies
7
Views
1K
• Astronomy and Astrophysics
Replies
1
Views
455
• Astronomy and Astrophysics
Replies
6
Views
2K
• Astronomy and Astrophysics
Replies
4
Views
3K
• Astronomy and Astrophysics
Replies
5
Views
2K
• Astronomy and Astrophysics
Replies
1
Views
1K
• Astronomy and Astrophysics
Replies
7
Views
3K
• Astronomy and Astrophysics
Replies
8
Views
2K
• Astronomy and Astrophysics
Replies
71
Views
10K
• Astronomy and Astrophysics
Replies
6
Views
2K