Hilbert transform of Sinc

  • #1
1,266
11

Homework Statement



Show that the Hilbert transform of ##\frac{\sin(at)}{at}## is given by

$$\frac{\sin^2(at/2)}{at/2}.$$

Homework Equations



The analytic signal of a function is given by ##f_a(t) = 2 \int^\infty_0 F(\nu) \exp(j2 \pi \nu t) \ d\nu,## where ##F(\nu)## is the Fourier transform of the function. We have ##f_a (t) = f(t) +j\hat{f}(t),## where ##\hat{f}(t)## is the Hilbert transform.

##FT(sinc(at)) = \frac{1}{a} \Pi (\frac{\nu}{a})##, where ##\Pi## denotes the rectangular function.

The Attempt at a Solution



This is the analytic signal whose imaginary part would be the Hilbert transform:

$$f_a(t) = 2 \int^\infty_0 FT \Big[ \frac{\sin(at)}{at} \Big] \exp(j2 \pi \nu t) \ d\nu$$

I tried to rewrite this as:

$$f_a(t) = 2 \int^\infty_{-\infty} u(t) \ FT \Big[ \frac{\sin(at)}{at} \Big] \exp(j2 \pi \nu t) \ d\nu$$

So, it looks like an inverse Fourier transform, so this becomes ##\left( \frac{1}{j2 \pi \nu} + \frac{\delta(\nu)}{2} \right) \frac{\sin(at)}{at}.## So this is not the correct solution. So here is another approach:

$$f_a(t) = 2 \int^\infty_0 FT \Big[ \frac{\sin(at)}{at} \Big] \exp(j2 \pi \nu t) \ d\nu = 2 \int^\infty_0 \frac{1}{|a|} \Pi \left( \frac{\nu}{a} \right) \exp(j2 \pi \nu t) \ d\nu$$

So, how do I continue from here? What method should I use?
 
Last edited:

Answers and Replies

  • #2
18,363
8,216
Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 

Related Threads on Hilbert transform of Sinc

  • Last Post
Replies
1
Views
1K
Replies
2
Views
581
Replies
7
Views
1K
Replies
2
Views
20K
Replies
2
Views
2K
Replies
5
Views
2K
  • Last Post
Replies
2
Views
603
  • Last Post
Replies
2
Views
664
  • Last Post
Replies
1
Views
1K
Top