MHB Homework: Bisectors and Intersection Points of Straight Lines

Click For Summary
One of the angle bisectors of the lines defined by the equation ax² + 2hxy + by² = 0 will intersect at the point of intersection of the lines represented by ax² + 2hxy + by² + 2gx + 2fy + c = 0 if the condition h(g² - f²) = fg(a - b) holds. The intersection point of the lines is identified as the center of the conic, given by specific coordinates. The angle bisector equation is hx² + (b - a)xy - hy² = 0. Substituting the intersection point into the bisector equation leads to a polynomial that simplifies to a product of factors. The condition ab - h² is always negative for conics consisting of two straight lines, confirming that the other factor must equal zero, thus proving the statement.
Suvadip
Messages
68
Reaction score
0
Show that one of the bisectors of the angles between the pair of straight lines ax2+2hxy+by2=0 will pass through the point of intersection of the straight lines ax2+2hxy+by2+2gx+2fy+c=0 if
h(g2-f2)=fg(a-b)

Please help
 
Mathematics news on Phys.org
suvadip said:
Show that one of the bisectors of the angles between the pair of straight lines $ax^2+2hxy+by^2=0$ will pass through the point of intersection of the straight lines $ax^2+2hxy+by^2+2gx+2fy+c=0$ if $h(g^2-f^2)=fg(a-b).$
If the conic $ax^2+2hxy+by^2+2gx+2fy+c=0$ consists of two straight lines, then the point of intersection of those lines is the centre of the conic, which is given here to be the point $$\left(\frac{hf-bg}{ab-h^2},\frac{hg-af}{ab-h^2}\right).\qquad(1)$$ The equation of the pair of angle bisectors of the lines $ax^2+2hxy+by^2=0$ is given here to be $$hx^2 + (b-a)xy -hy^2 = 0.\qquad(2)$$ Substitute the point (1) into the equation (2), and you get $$h(hf-bg)^2 + (b-a)(hf-bg)(hg-af) -h(hg-af)^2 = 0.$$ Multiply that out, and you will find that some of the terms combine or cancel. The remaining terms can be factorised to give you $$(ab-h^2)(g^2h-f^2h + bfg - afg)=0.$$ But $ab-h^2\ne0$ because that expression is always negative for a conic consisting of two straight lines (see http://www.mathhelpboards.com/f11/pair-straight-lines-3646/). Therefore the other factor must be zero, which gives the required solution.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
5K
Replies
24
Views
2K
  • · Replies 6 ·
Replies
6
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
17
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K