MHB Homework: Bisectors and Intersection Points of Straight Lines

Suvadip
Messages
68
Reaction score
0
Show that one of the bisectors of the angles between the pair of straight lines ax2+2hxy+by2=0 will pass through the point of intersection of the straight lines ax2+2hxy+by2+2gx+2fy+c=0 if
h(g2-f2)=fg(a-b)

Please help
 
Mathematics news on Phys.org
suvadip said:
Show that one of the bisectors of the angles between the pair of straight lines $ax^2+2hxy+by^2=0$ will pass through the point of intersection of the straight lines $ax^2+2hxy+by^2+2gx+2fy+c=0$ if $h(g^2-f^2)=fg(a-b).$
If the conic $ax^2+2hxy+by^2+2gx+2fy+c=0$ consists of two straight lines, then the point of intersection of those lines is the centre of the conic, which is given here to be the point $$\left(\frac{hf-bg}{ab-h^2},\frac{hg-af}{ab-h^2}\right).\qquad(1)$$ The equation of the pair of angle bisectors of the lines $ax^2+2hxy+by^2=0$ is given here to be $$hx^2 + (b-a)xy -hy^2 = 0.\qquad(2)$$ Substitute the point (1) into the equation (2), and you get $$h(hf-bg)^2 + (b-a)(hf-bg)(hg-af) -h(hg-af)^2 = 0.$$ Multiply that out, and you will find that some of the terms combine or cancel. The remaining terms can be factorised to give you $$(ab-h^2)(g^2h-f^2h + bfg - afg)=0.$$ But $ab-h^2\ne0$ because that expression is always negative for a conic consisting of two straight lines (see http://www.mathhelpboards.com/f11/pair-straight-lines-3646/). Therefore the other factor must be zero, which gives the required solution.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top