sutupidmath
- 1,629
- 4
Homework Statement
Well, first i appologize for posting problems so often, but i have an exam comming up soon, so i am just working some problems on my own.Problem:
Let G be a cyclic group [a](generated by a). Let b' be any element of a grou p G'.
(i)Show that ther eis at most one homomorphism from G to G' with \theta(a)=b'
(ii)Show that there is a homomorphism \theta from G to G' with \theta(a)=b' if and only if the order of b' is an integral divisor of the order of a.
(iii) state a condition on the orders of a adn b' fro the homomorphism (ii) to be injective.
Homework Equations
The Attempt at a Solution
(i) \theta:G->G' \theta(a)=b' I am not sure whether i am getting the question right. I am assuming that in this case b' would be a fixed element of G' right. ??Because with this in mind, will my reasoning/proof follow below.
Well, i think that if b'=e' then we will certainly have a homomorphism. SInce
for any two elements x,y in G, where x=a^m,y=a^m we would have
\theta(a^ma^n)=\theta(a^{m+n})=e'=e'e'=\theta(a^m)\theta(a^n) so such a mapping would be a group homomorphism between these two groups.
Now,as in one of my previous questions(which i haven't received any answers yet) i am having trouble how to go about proving that we cannot have any other hommomorphism defined by this theta. So how would i prove this?
(ii)=> let \theta:G->G' \theta(a)=b' be a homomorphism. Let o(a)=p and o(b')=q.WE want to show that q|p??
Ok, let e'=\theta(e)=\theta(a^p)=[\theta(a)]^p=(b')^p=>q|p
<= Let q|p. Now we want to show that \theta:G->G' \theta(a)=b' is a homomorphism.?
That is we want to show that for any two elements x,y in G, where x=a^m,y=a^n \theta(xy)=\theta(a^ma^n)=\theta(a^m)\theta(a^n)??
I'm not sure how to go about this one either?