Horribly Confused With Complex Logarithms

MrBillyShears
Gold Member
Messages
14
Reaction score
0
I'm getting myself all confused with complex logarithms. I'll try to explain why. One identity with complex logarithms is ln(z^c)=cln(z)+2πik, with k an integer. This is, of course, a more general case of ln(e^c)=c+2πik, but it doesn't always work the same! Let's say we are evaluating ln(e^i). Using the latter identity, it is i+2πik, which is, logically, the correct answer, but using the first identity, you get iln(e)+2πik, which is i(1+2πin)+2πik=i+2πn+2πik...! What! Obviously e^(i+2π) doesn't equal e^i. Another example, ln(1)=ln(e^2πi)=2πi(1+2πin)+2πik=2πi+4π^2n+2 πik

And, I have another problem. I have this when I try to solve an equation 10^z=e^πi, so I take ln of both sides zln(10)=πi+2πik and then z=(πi+2πik)/ln(10), where ln(10) in the denominator is infinite answered and will give solutions that don't work! I'm clearly doing something wrong, so someone please help me!
 
Mathematics news on Phys.org
One identity with complex logarithms is ln(z^c)=cln(z)+2πik, with k an integer.
If this identity allows complex c (check that!), then you have to be more careful which branch of the logarithm you choose on the right side.

where ln(10) in the denominator is infinite answered and will give solutions that don't work!
A multi-valued log is not the exact inverse function of 10^z for reasonable definitions of 10^z. If you use the same freedom to define 10^z as exp(ln(10)z) with a multi-valued ln(10) then they should work.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top