How Can a Cricketer's Bowling Technique Influence Projectile Motion?

  • Thread starter Thread starter NASSAfellow
  • Start date Start date
  • Tags Tags
    Exam Projectiles
AI Thread Summary
The discussion revolves around a physics problem involving a cricketer's bowling technique and the projectile motion of a cricket ball. The initial analysis shows that the ball takes approximately 0.7 seconds to fall 2.3 meters from a height of 2.3 meters, using standard kinematic equations. Participants seek assistance with subsequent parts of the problem, specifically how long it takes the ball to rise 0.71 meters after bouncing and how to calculate the initial horizontal velocity. A contributor mentions the coefficient of restitution, suggesting that all velocities, including horizontal, are affected by the same reduction ratio. The conversation highlights the complexities of projectile motion and the impact of air resistance on horizontal velocity.
NASSAfellow
Messages
19
Reaction score
0

Homework Statement



I was practicing exams for PHY 1 but I don't understand how to do this question, even with the mark scheme.

A cricketer bowls a ball from a height of 2.3m. The ball leaves the hand horizontally with a velocity u. After bouncing once, it passes just over the stumps at the top of its bounce. The stumps are 0.71m high and are situated 20m from where the bowler releases the ball.

(Diagram shown)

a) Show that from the momnt it is released, the ball takes about 0.7 s to fall 2.3 m.

This is pretty easy, resolving vertically,
u = 0 m/s
a= -9.81 m/s/s
s= 2.3 m

Using v^2= u^2 + 2as
u^2 cancels out.
2 x -9.81 x 2.3 = 45.126
Square root ans = v = -6.72 m/s
Using t = v-u/a
-6.72-0/-9.81 = 0.685s

Then it says, b) How long does it take the ball to rise 0.71 m after bouncing? (3 mark question)


Then c) Use your answers to parts (a) and (b) to calculate the initial horizontal velocity u of the ball. You may assume that the horizonatl velocity has remained constant (2 marks)



d) In reality the horixontal velocity would not be constant. State one reason why.

The answer to this is simple too: There will be significant air resistance at the bounce.

Please could someone help with parts b and c.

Thanks, Nasser
 
Physics news on Phys.org
NASSAfellow said:

Homework Statement



I was practicing exams for PHY 1 but I don't understand how to do this question, even with the mark scheme.

A cricketer bowls a ball from a height of 2.3m. The ball leaves the hand horizontally with a velocity u. After bouncing once, it passes just over the stumps at the top of its bounce. The stumps are 0.71m high and are situated 20m from where the bowler releases the ball.

(Diagram shown)

a) Show that from the momnt it is released, the ball takes about 0.7 s to fall 2.3 m.

This is pretty easy, resolving vertically,
u = 0 m/s
a= -9.81 m/s/s
s= 2.3 m

Using v^2= u^2 + 2as
u^2 cancels out.
2 x -9.81 x 2.3 = 45.126
Square root ans = v = -6.72 m/s
Using t = v-u/a
-6.72-0/-9.81 = 0.685s

Then it says, b) How long does it take the ball to rise 0.71 m after bouncing? (3 mark question)


Then c) Use your answers to parts (a) and (b) to calculate the initial horizontal velocity u of the ball. You may assume that the horizonatl velocity has remained constant (2 marks)



d) In reality the horixontal velocity would not be constant. State one reason why.

The answer to this is simple too: There will be significant air resistance at the bounce.

Please could someone help with parts b and c.

Thanks, Nasser


um, what grade is this?:eek:
 
What a canny problem. i believe this assumes knowledge of coefficient of restitution which can be computed from the ratios of Yf/Yi, specifically the sqrt of same. All velocities are subject, including horizontal, to the same reduction, in other words Vxf=0.55Vxi.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top