How Can Cylindrical Coordinates Simplify Complex Number Integration?

Click For Summary
Using cylindrical coordinates simplifies the integration of complex numbers by transforming the Cartesian coordinates (x, y) into polar coordinates (r, φ). The integral can be expressed as a double integral over r and φ, which is easier to evaluate. The transformation allows for the simplification of the term (x^2 + y^2)^n, making the integration process more manageable. The discussion highlights the effectiveness of this approach in resolving complex integrals. Ultimately, cylindrical coordinates provide a valuable method for simplifying complex number integration.
tanaygupta2000
Messages
208
Reaction score
14
Homework Statement
Show that (1/π) ∫∫d(Re{a})d(Im{a}) |a><a| = I

where |a> is a coherent state = exp(-a*a/2) (a^n)/√n! |n>
and I is identity operator
Relevant Equations
|a> = exp(-a*a/2) Σ(a^n)/√n! |n>
<a| = exp(-a*a/2) Σ(a*^n)/√n! <n|
|n><n| = I
Capture.PNG


I began this solution by assuming a = x+iy since a is a complex number.
So I wrote expressions of <a| and |a> in which |n><n| = I.
I got the following integral:

Σ 1/πn! ∫∫ dx dy exp[-(x^2 + y^2)] (x^2 + y^2)^n I

I tried solving it using Integration by Parts but got stuck in the (x^2 + y^2)^n part.
Please help how can I evaluate this integral in an easier way.
Thank You !
 
Physics news on Phys.org
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
 
  • Informative
Likes tanaygupta2000
anuttarasammyak said:
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
Yess! It very well worked! Lots of Thanks.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K