How Can Cylindrical Coordinates Simplify Complex Number Integration?

tanaygupta2000
Messages
208
Reaction score
14
Homework Statement
Show that (1/π) ∫∫d(Re{a})d(Im{a}) |a><a| = I

where |a> is a coherent state = exp(-a*a/2) (a^n)/√n! |n>
and I is identity operator
Relevant Equations
|a> = exp(-a*a/2) Σ(a^n)/√n! |n>
<a| = exp(-a*a/2) Σ(a*^n)/√n! <n|
|n><n| = I
Capture.PNG


I began this solution by assuming a = x+iy since a is a complex number.
So I wrote expressions of <a| and |a> in which |n><n| = I.
I got the following integral:

Σ 1/πn! ∫∫ dx dy exp[-(x^2 + y^2)] (x^2 + y^2)^n I

I tried solving it using Integration by Parts but got stuck in the (x^2 + y^2)^n part.
Please help how can I evaluate this integral in an easier way.
Thank You !
 
Physics news on Phys.org
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
 
  • Informative
Likes tanaygupta2000
anuttarasammyak said:
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
Yess! It very well worked! Lots of Thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top