How Can Cylindrical Coordinates Simplify Complex Number Integration?

tanaygupta2000
Messages
208
Reaction score
14
Homework Statement
Show that (1/π) ∫∫d(Re{a})d(Im{a}) |a><a| = I

where |a> is a coherent state = exp(-a*a/2) (a^n)/√n! |n>
and I is identity operator
Relevant Equations
|a> = exp(-a*a/2) Σ(a^n)/√n! |n>
<a| = exp(-a*a/2) Σ(a*^n)/√n! <n|
|n><n| = I
Capture.PNG


I began this solution by assuming a = x+iy since a is a complex number.
So I wrote expressions of <a| and |a> in which |n><n| = I.
I got the following integral:

Σ 1/πn! ∫∫ dx dy exp[-(x^2 + y^2)] (x^2 + y^2)^n I

I tried solving it using Integration by Parts but got stuck in the (x^2 + y^2)^n part.
Please help how can I evaluate this integral in an easier way.
Thank You !
 
Physics news on Phys.org
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
 
  • Informative
Likes tanaygupta2000
anuttarasammyak said:
Why don't you regard x and y are coordinates of xy plane and achieve integration by cylindrical coordinates i.e.
\int dx \int dy = \int_0^{2\pi} d \phi \int_0^\infty r dr
Yess! It very well worked! Lots of Thanks.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top