kamerling said:
cos 12 cos 24 cos 48 cos 96 = -1/16
ooh, kamerling, that's clever!
Your splitting the problem into cos and sin products has given me the following idea:
tanAtanBtanCtanD = -1
iff cosAcosBcosCcosD + sinAsinBsinCsinD = 0
But (4cosAcosBcosCcosD + sinAsinBsinCsinD)
= [cos(A+B) + cos(A-B)][cos(C+D) + cos(C-D)] + [cos(A+B) - cos(A-B)][cos(C+D) - cos(C-D)]
= 2[cos(A+B)cos(C+D) + cos(A-B)cos(C-D)]
= cos(A+B+C+D) + cos(-A-B+C+D) + cos(A-B-C+D) + cos(-A+B-C+D)
(putting E = A + B + C + D)
= cosE + cos(E - 2(A+B)) + cos(E - 2(B+C)) + cos(E - 2(C+A)).
So, in particular, tanAtanBtanCtanD = -1 if A+B+C+D = 180º and:
cos2(B+C) + cos2(C+A) + cos2(A+B) = -1;
or if A+B+C+D = 90º and:
sin2(B+C) + sin2(C+A) + sin2(A+B)) = 0.
(For example, 12º 24º 48º and 96º, because cos72º + cos120º + cos144º = cos72º - cos60º - cos36º = -1)
can anyone find a simpler proof
or some geometric explanation for this?
