How can I calculate the exponential of a non-diagonal matrix?

maximus123
Messages
48
Reaction score
0
Hello,

I have a problem where I'm given the following

H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
Where

\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
And in general

\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
So

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
The problem is I need to get from here to

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />

I can't work out how to get to this cos and sine matrix. I tried this

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}

Beyond this I cannot see how to get from here to

\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}
Any help would be really appreciated
 
Physics news on Phys.org
There might be more than one way to approach the problem, but I would proceed thus. You can calculate the exponential of a matrix easily if the matrix is diagonal. For
$$
A = \left( \begin{array}{cc} a_1 & 0 \\ 0 & a_2 \end{array} \right)
$$
$$
\exp(A) = \left( \begin{array}{cc} e^{a_1} & 0 \\ 0 & e^{a_2} \end{array} \right)
$$
Can you find the rotation that brings you from the z-basis to the x-basis?
 
Thanks for responding,

So based on what you've said for the exponential of a matrix the expression in my original post would become

<br /> \Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\textrm{exp}\left[\begin{pmatrix}0 &amp; i\frac{\Omega t}{2}\\i\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right]\left|0\right\rangle=\begin{pmatrix}0 &amp; \textrm{exp}\left[i\frac{\Omega t}{2}\right]\\\textrm{exp}\left[i\frac{\Omega t}{2}\right] &amp; 0\end{pmatrix}\left|0\right\rangle\\\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\begin{pmatrix}0 &amp; \textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right)\\\textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right) &amp; 0\end{pmatrix}\left|0\right\rangle<br /> <br />

is that correct? It doesn't seem much closer to the intended end result.

When you asked about the rotation are you referring to the relationships \sigma_y\sigma_z=-i\sigma_x etc.?
 
Last edited:
Calculating the exponential of a matrix by taking the exponential of the elements only works for a diagonal matrix. You can show this by considering the series expansion of the exponential function.

You do not have a diagonal matrix, this is why I said you need to look at the rotation matrix that will bring you from the z basis to the x basis, in which ##\sigma_x## is diagonal.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top