maximus123
- 48
- 0
Hello,
I have a problem where I'm given the following
H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
Where
\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
And in general
\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
So
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
The problem is I need to get from here to
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />
I can't work out how to get to this cos and sine matrix. I tried this
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 & \frac{\Omega t}{2}\\\frac{\Omega t}{2} & 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 & \frac{\Omega t}{2}\\\frac{\Omega t}{2} & 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}
Beyond this I cannot see how to get from here to
\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}
Any help would be really appreciated
I have a problem where I'm given the following
H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />
I can't work out how to get to this cos and sine matrix. I tried this
\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 & \frac{\Omega t}{2}\\\frac{\Omega t}{2} & 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 & \frac{\Omega t}{2}\\\frac{\Omega t}{2} & 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}
Beyond this I cannot see how to get from here to
\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}