How can I calculate the force vector for a mortar in a computer game?

  • Thread starter Thread starter s w
  • Start date Start date
  • Tags Tags
    Trajectory
AI Thread Summary
To calculate the force vector for a mortar in a computer game, the initial position, target position, target height, mass of the mortar, and gravity must be considered. The goal is to determine the force needed to achieve a parabolic arc that reaches the specified target height and distance. The calculations should account for three-dimensional movement, allowing for targets that are higher or lower than the initial position. While drag is assumed to be negligible, understanding the potential effects of air resistance is important for accuracy. Utilizing the equations of motion and the fundamental physics principle F=ma will facilitate the calculations needed for the mortar's trajectory.
s w
Messages
4
Reaction score
0
I'm in the process of created a computer game and I want to introduce a mortar into the game. What I want to do is given the initial position, target position, and target height, calculate the force vector that is needed to launch the mortar so it hits the target height and target distance. The reason I put a target height in there is so the mortar is doing an appropriate parabolic arc. I don't want it to just do a slight arc and hit the target, I want it to go relatively high but still remain inside the bounds of the level.

So to summarize. I know the initial position, target position, target height, mass of the object, and gravity (assume no drag) and I want to know the force vector needed. It also must be said that the initial and target positions lie in all 3 planes. So I'd really like to be able to hit a target that is higher or lower than the initial position if possible. As for the target height, that is the height above the initial position.
 
Physics news on Phys.org
it depends if you have the resisting force of air and in what magnitude?F=kmv or F=kmv.v or ... and this depends on your estimated speed, without resistance: X=V*COSa*t,Y=(V*SINa*t)-((1/2)*g*t.t)
 
Quoted from above.
s w said:
(assume no drag)
 
i don't study physics in english so i am not familiar with some words but anyway just use the equations i mentioned in three dimension(x,y,z) and simply use F=ma thing on them, plus ,if you want to calculate the resistance first check your estimated speed with some table to see if the resistance is kmv or kmv.v and also you can estimate it by using the taylors formula or somethinh(f(X)=a1+a2x+a3xx+a4xxx+...) then cut off from xx.
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top