How Can I Integrate (sin t)(e^-st) by Parts?

  • Thread starter Thread starter Jerimy240
  • Start date Start date
  • Tags Tags
    Interval
Jerimy240
Messages
2
Reaction score
0
f(t)={sin t, 0<t<pie
0, t>pie}

After integrating (sin t)(e^-st) by parts I get

-1/s(sin t)e^-st + 1/s Integral[(e^-st (cos t)dt]

Looks like I'll be integrating forever. I'm I missing something?

Also, is there software you can install to help you type math symbols so I can interact on this forum more efficiently?
 
Physics news on Phys.org
Yes, you are integrating
\int_0^{\pi} e^{-st}sin(t)dt
and if you use integration by parts with you will, after a couple of integrations get something like
\int_0^{\pi} e^{-st}sin(t)dt= F(s)- C\int_0^\pi e^{-st}sin(t)dt

Now add that integral to both sides:
(1+ C)\int_0^{\pi} e^{-st}sin(t)dt= F(s)
 
Thanks HOI, the final answer is (1+e^-spie)/(s^2 + 1) I don't know how to get there
 
Do one more integration by parts and then look at HallsofIvy's suggestion again.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top