How can I obtain the convolution output for an input function and operator?

AlecYates
Messages
12
Reaction score
0
Hey,

I've begun going through a book called "An introduction to geophysical exploration" by Phillip Kearey and Michael Brooks and I've come across a problem I can't for the life of me see how they got their answer.

Essentially, given an input function gi (i = 1,2... m), and a convolution operator fj (j = 1,2 ...n) the convolution output is given by:

yk = \Sigmagifk - i (k = 1,2 ... m + n - 1)

with (Sigma sum starting at i = 1 and going up to m).

Their example is with an input of g(2,0,1) and operator of f(4,3,2,1) the output is y(8,6,8,5,2,1).

Not only can I not see how this is obtained, but based on the function if I'm trying to find y1 I end up with negative index of fj as I perform fk - i as i increases from 1 to 3 with the largest index being f0 (from f1 - 1 where k = 1 and i = 1). How can this be correct?

Any help would be appreciated.
 
Mathematics news on Phys.org
Just realized this should be in the homework/CW area (by the rules listed in the pinned thread). Reposting.
 
AlecYates said:
Their example is with an input of g(2,0,1) and operator of f(4,3,2,1) the output is y(8,6,8,5,2,1).

Not only can I not see how this is obtained, but based on the function if I'm trying to find y1 I end up with negative index of fj as I perform fk - i as i increases from 1 to 3 with the largest index being f0 (from f1 - 1 where k = 1 and i = 1). How can this be correct?
The convolution g*f basically applies a "sliding filter" to g, where the filter is just a reversed f (or f by a reversed g; it's symmetric). In this case f(-n) = (1,2,3,4), so the terms in g*f are just

$$
\begin{matrix}
g & & & & 2 & 0 & 1 \\
f(-n) & 1 & 2 & 3 & 4 \\
g*f & & & & 8
\end{matrix}
\qquad \ldots \qquad
\begin{matrix}
& 2 & 0 & 1 \\
1 & 2 & 3 & 4 \\
& 4 & 0 & & = 4
\end{matrix}
\qquad \ldots \qquad
\begin{matrix}
& 2 & 0 & 1 \\
& & & 1 & 2 & 3 & 4 \\
& & & 1
\end{matrix}
$$

At the endpoints you see that f(-n) is allowed to "fall off the ends," so you get as many outputs as both inputs combined, less 1. This is just because f and g have to overlap by at least one term to make an output.

There are some nice visual demonstrations at the Wikipedia page for Convolution.
 
  • Like
Likes 1 person
Yeah they have a demonstration of this on the next page of the textbook, which is easy enough to follow (although it didn't mention anything about the reversed filter which is helpful, I had wondered if it was a mistake originally).

It's just frustrating I can't get the same result using the Sigma Summation given.

Using the sigma summation I get y(0,8,6,8,5,2) as if I regard any impossible index's i.e. f(n) where n < 1 as 0, y1 can only ever be 0 as opposed to 8. So my solution is shifted to the right by one place from the actual solution.
 
Well, following your notation it seems to me that the summation should read

$$
y_k = \sum_{i} g_i \, f_{k-i+1} .
$$
That gives
$$
\begin{align}
y_1 &= g_1 \, f_1 + 0 = (2)(4) = 8 \\
& \vdots \\
y_{m+n-1} &= y_6 = 0 + g_3 \, f_{6-3+1} = (1)(1) = 1,
\end{align}
$$
which looks correct.
 
Yup seems to be. Guess I'll assume it an error within the text and move on. Cheers
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top