How can I solve this integration problem using substitution?

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Integrate
Dell
Messages
555
Reaction score
0
how do i integrate this??

how do i integrate this function?

\intdx/(ex-1)0.5

i have tried all the methods i know and haven't cracked it, the best try i have had so far is

\intdx/(ex-1)0.5

===>t=ex; dt=exdx

\intdt/t*(\sqrt{t-1})

now from here i tried integration in parts and got really complicated

u=1/\sqrt{t-1}
du=-dt/2(t-1)1.5

dv=dt/t
v=ln(t)

=\intdt/t*\sqrt{t-1}=ln(t)/\sqrt{t-1}-\int-ln(t)dt/2(t-1)1.5

how else can i solve this
 
Last edited:
Physics news on Phys.org


http://integrals.wolfram.com/index.jsp?expr=(e^x-1)^-0.5&random=false

Integrals are hard
 


Use the substitution t=sqrt(exp(x)-1) => x=ln(t^2+1)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top