nameVoid
- 238
- 0
According to Kirchoff's first law for electrical circuits V=RI+L(dI/dt) where constants V, R and L denote the electromotive force, the resistance, and the inductance, respectively, and I denotes the current at time t. If the electromotive force is terminated at time t=0 and if the current is I(0) at the instant of removal, prove that I=I(0)e^(-Rt/L)
<br /> v=RI+L(\frac{dI}{dT})<br />
<br /> dt=\frac{LdI}{v-RI}<br />
<br /> t+b=Lln|v-RI|(-R) <br />
<br /> e^{\frac{t+b}{-LR}}=v-RI<br />
<br /> t-> v-> 0 , I=I(0)<br />
<br /> e^{\frac{b}{-LR}}=-RI(0)<br />
<br /> -e^{\frac{t}{-LR}}(RI(0))=v-RI<br />
<br /> I=\frac{e^{\frac{t}{-LR}}RI(0)+v}{R}<br />
im afraid to do anymore work on this but looks good to me so far
Homework Equations
The Attempt at a Solution
<br /> v=RI+L(\frac{dI}{dT})<br />
<br /> dt=\frac{LdI}{v-RI}<br />
<br /> t+b=Lln|v-RI|(-R) <br />
<br /> e^{\frac{t+b}{-LR}}=v-RI<br />
<br /> t-> v-> 0 , I=I(0)<br />
<br /> e^{\frac{b}{-LR}}=-RI(0)<br />
<br /> -e^{\frac{t}{-LR}}(RI(0))=v-RI<br />
<br /> I=\frac{e^{\frac{t}{-LR}}RI(0)+v}{R}<br />
im afraid to do anymore work on this but looks good to me so far
Last edited: