How can Laurent series be applied to complex analysis problems?

d3nat
Messages
102
Reaction score
0

Homework Statement


Laurent series

Homework Equations



##f(z) = sinh(z)## around origin

The Attempt at a Solution



##sinh(z +\frac{1}{z}) = \sum_{-infty}^\infty A_nz^n##
where
##A_n = \frac{1}{2\pi i} \oint \frac{sinh(z'+\frac{1}{z'})}{z'^{n+1}} d'##

Let c = unit circle, ##z'=e^{i \theta}##
## dz' = ie^{i\theta} d\theta##

using Euler relationships

## = \frac{1}{2\pi i} i \oint \frac{sinh(e^{i\theta}+e^{-i\theta}}{(e^{i\theta})^{n+1}} d\theta'##
Cancel out the ##e^{i\theta}## on top and bottom

## = \frac{1}{2\pi} \oint \frac{sinh(2cos\theta)}{e^{in\theta}} d\theta##

## = \frac{1}{2\pi} \int_0^{2\pi} sinh(2cos\theta) e^{-in\theta} d\theta##

##e^{-in\theta} = cos(n\theta)-isin(n\theta)##

Then I said that only the ## cos(n\theta) ## part mattered because I stated the bounds of the integral were from ##0 to 2\pi##

## = \frac{1}{2\pi} \int_0^{2\pi} sinh(2cos\theta) cos(n\theta) d\theta##

However, I've tried many ways of simplifying this and I can't get an answer. Any suggestions? I'm so stumped... :/

Homework Statement


prove contour integral

##\int_0^{2\pi} \frac\{sin^2{\theta)}{a+bcos(\theta)} d\theta = \frac{2\pi}{b^2} [a-(a^2-b^2)^{frac{1}{2}}]##

Homework Equations



## d\theta = \frac{-i dz}{z}##
## sin^2(\theta) = \frac{-1}{4}(z^2+\frac{1}{z^2}-2)##
## cos(\theta) = \frac{1}{2}(z+\frac{1}{z})##

The Attempt at a Solution



Subst. all in and assuming unit circle:

## = -i \oint \frac{dz}{z} \frac{\frac{-1}{4}(z^2+\frac{1}{z^2}-2)}{a+ \frac{b}{2}(z+\frac{1}{z})} dz##

rearranging

## = \frac{i}{2} \oint \frac{dz}{z} \frac{(z^2+\frac{1}{z^2}-2)}{bz^2+2az+b} dz##

Then I solved this using the quadratic equations, so I had two roots (for the denominator)

I know I have to use residue theory, but I've never had to do it with something in the numerator. Is it still the same method? I'm confused...

 
Physics news on Phys.org
d3nat said:

Homework Statement


Laurent series

Homework Equations



##f(z) = sinh(z)## around origin

The Attempt at a Solution



##sinh(z +\frac{1}{z}) = \sum_{-infty}^\infty A_nz^n##
where
##A_n = \frac{1}{2\pi i} \oint \frac{sinh(z'+\frac{1}{z'})}{z'^{n+1}} d'##

Let c = unit circle, ##z'=e^{i \theta}##
## dz' = ie^{i\theta} d\theta##

using Euler relationships

## = \frac{1}{2\pi i} i \oint \frac{sinh(e^{i\theta}+e^{-i\theta}}{(e^{i\theta})^{n+1}} d\theta'##
Cancel out the ##e^{i\theta}## on top and bottom

## = \frac{1}{2\pi} \oint \frac{sinh(2cos\theta)}{e^{in\theta}} d\theta##

## = \frac{1}{2\pi} \int_0^{2\pi} sinh(2cos\theta) e^{-in\theta} d\theta##

##e^{-in\theta} = cos(n\theta)-isin(n\theta)##

Then I said that only the ## cos(n\theta) ## part mattered because I stated the bounds of the integral were from ##0 to 2\pi##

## = \frac{1}{2\pi} \int_0^{2\pi} sinh(2cos\theta) cos(n\theta) d\theta##

However, I've tried many ways of simplifying this and I can't get an answer. Any suggestions? I'm so stumped... :/

Homework Statement


prove contour integral

##\int_0^{2\pi} \frac\{sin^2{\theta)}{a+bcos(\theta)} d\theta = \frac{2\pi}{b^2} [a-(a^2-b^2)^{frac{1}{2}}]##

Homework Equations



## d\theta = \frac{-i dz}{z}##
## sin^2(\theta) = \frac{-1}{4}(z^2+\frac{1}{z^2}-2)##
## cos(\theta) = \frac{1}{2}(z+\frac{1}{z})##

The Attempt at a Solution



Subst. all in and assuming unit circle:

## = -i \oint \frac{dz}{z} \frac{\frac{-1}{4}(z^2+\frac{1}{z^2}-2)}{a+ \frac{b}{2}(z+\frac{1}{z})} dz##

rearranging

## = \frac{i}{2} \oint \frac{dz}{z} \frac{(z^2+\frac{1}{z^2}-2)}{bz^2+2az+b} dz##

Then I solved this using the quadratic equations, so I had two roots (for the denominator)

I know I have to use residue theory, but I've never had to do it with something in the numerator. Is it still the same method? I'm confused...

I don't get where you are going here. sinh(z) has a Taylor series around z=0. It's (e^z-e^(-z))/2. There are no negative powers of z at all.
 
Dick said:
I don't get where you are going here. sinh(z) has a Taylor series around z=0. It's (e^z-e^(-z))/2. There are no negative powers of z at all.


I mean, yah, I can solve it with a Taylor series, but I wasn't sure how to solve using a Laurent series, which is what the problem asks.
 
d3nat said:
I mean, yah, I can solve it with a Taylor series, but I wasn't sure how to solve using a Laurent series, which is what the problem asks.

A Laurent series is just a Taylor series possibly includes term of negative degree. sinh(z) doesn't have any. The Taylor series is the same as the Laurent series.
 
Dick said:
A Laurent series is just a Taylor series possibly includes term of negative degree. sinh(z) doesn't have any. The Taylor series is the same as the Laurent series.

Ohhh. Well then, I feel dumb.
My professor made them out to be completely different, so I thought it was two different methods of solving.
Thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top