Following up on
@PeroK's post,
for the record, here's the rapidity version [where ##v=\tanh\theta## and ##\gamma=\cosh\theta##]
(to show the analogy to Euclidean trigonometry).
[I'll absorb the ##c##'s.]
vanhees71 said:
$$\begin{pmatrix}t' \\ x' \end{pmatrix}=\begin{pmatrix} \gamma & -\gamma v \\ -\gamma v &\gamma \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}.$$
...
$$
\hat{\Lambda}^{-1} = \frac{1}{\mathrm{det} \hat{\Lambda}} \begin{pmatrix} \gamma & \gamma v \\ \gamma v & \gamma \end{pmatrix}=\begin{pmatrix} \gamma & \gamma v \\ \gamma v & \gamma \end{pmatrix}.
$$
is
$$
\begin{align*}
\begin{pmatrix}t' \\ x' \end{pmatrix}
\
&=\begin{pmatrix} \cosh\theta & -\cosh\theta \tanh\theta \\ -\cosh\theta \tanh\theta &\cosh\theta \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}\\
&=\begin{pmatrix} \cosh\theta & -\sinh\theta \\ -\sinh\theta &\cosh\theta \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}.
\end{align*}
$$
and
$$
\hat{\Lambda}^{-1} =
\begin{pmatrix} \cosh\theta & \sinh\theta \\ \sinh\theta &\cosh\theta \end{pmatrix},
$$
which could be interpreted as saying the inverse boost (in one spatial dimension) is using ##-\theta## for ##\theta##, analogous to a Euclidean rotation in the plane.
PeroK said:
$$\gamma[x' + vt'] = \gamma[\gamma(x - vt) + v\gamma(t - vx/c^2)] = \gamma^2[(1- v^2/c^2)x -vt + vt] = x$$
is
$$\cosh\theta[x' + \tanh\theta\ t'] = \cosh\theta[\cosh\theta(x - \tanh\theta\ t) + \tanh\theta \cosh\theta(t - \tanh\theta\ x)] = \cosh^2\theta[(1- \tanh^2\theta)x -\tanh\theta\ t + \tanh\theta\ t] = x$$
since ##\gamma^2(1-(v/c)^2) \ =\ \cosh^2\theta(1-\tanh^2\theta) \ =\ \cosh^2\theta-\sinh^2\theta \ =\ 1##.
Actually, it might be better to write
$$\begin{align*}
\cosh\theta[x' + \tanh\theta\ t']
&=
\cosh\theta\ x' + \sinh\theta\ t'\\
&=
\cosh\theta (\cosh\theta\ x - \sinh\theta\ t) + \sinh\theta(\cosh\theta\ t - \sinh\theta\ x)\\
&=
(\cosh\theta^2-\sinh^2\theta)x +( -\cosh\theta \sinh\theta + \sinh\theta\cosh\theta) t\\
&=
(1 )x +( 0 ) t\\
&=x
\end{align*}
$$