How can the derivative of a differentiable function be expressed using limits?

dgonnella89
Messages
8
Reaction score
0

Homework Statement


Prove if f(x) is differentiable at x=a then f'(a)=lim_{h\rightarrow0}\frac{f(a+h)-f(a-h)}{2h}

Homework Equations


I know that the derivative is defined as
f'(a)=lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}

The Attempt at a Solution


Starting from the definition I used a known relation.
f&#039;(a)=lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}=lim_{h\rightarrow0}\frac{f(a+h)-f(a)}{h}<br /> =lim_{h\rightarrow0}\left[\frac{f(a+h)-f(a-h)}{h}+\frac{f(a-h)-f(a)}{h}\right]

I'm not sure how to decompose anymore from here. Any help you could give would be greatly appreciated.
 
Physics news on Phys.org
Hi dgonnella89! :smile:

Hint: put k = -h in the definition of f'(a). :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top