How can the forces on a pendulum be calculated when encountering a peg?

  • Thread starter Thread starter kero
  • Start date Start date
  • Tags Tags
    Hard Mechanics
AI Thread Summary
To calculate the forces on a pendulum encountering a peg, one must analyze the pendulum's motion at both the initial and final positions. The equations involving forces alone may not yield correct results, as they can lead to contradictions like r equaling L. Instead, applying conservation of energy is crucial, particularly when the string becomes slack and the pendulum transitions to projectile motion. Key steps include determining the angle at which the pendulum enters projectile motion, calculating its velocity at that point, and ensuring all variables cancel out to derive the desired equation. Ultimately, this approach leads to the correct expression for cos(θ) in relation to r, L, and α.
kero
Messages
5
Reaction score
0

Homework Statement


a pendulum of mass m and length L is pulled back an angle θ and released. After the pendulum swings through its lowest point, it encounters a peg α degrees out and r meters from the top of the string. The mass swings up about the peg until the string becomes slack with the mass falling inward and hitting the peg. show that cosθ=r/Lcosα-√3/2(1-r/L)
image: http://s3.amazonaws.com/answer-board-image/d5a0e79b1d3c5c20451488d56a3b27d7.jpg

The Attempt at a Solution



I tried to find the forces on the pendulum at the initial and final position
Lcosθ-mg=0
Lsinθ=ma
rcosθ-mg=0
rsinθ=ma
but it doesn't seem to work at all. what I get is that r=L which is impossible.
 
Physics news on Phys.org
use conservation of energy, forces arent going to help you much here
 
You need to set up equations for each of the following:
1. The projectile motion problem that starts when the string is no longer taught.
2. The position (angle) at which the ball enters projectile motion (when the gravitational force inward surpasses the necessary centripetal force).
3. The ball's velocity (using conservation of energy) when it enters projectile motion.

Then you will need to combine all of those so that the angle you found in (2) cancels out, the time component you introduced in (1) also cancels out, and the velocity you solved for in (3) should cancel out. Once you solve this for cos(θ) you should get the answer written.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top