How can we solve the infinite sheet problem for electric field at a point P?

  • Thread starter Thread starter latentcorpse
  • Start date Start date
  • Tags Tags
    Infinite
latentcorpse
Messages
1,411
Reaction score
0
http://www.ph.ed.ac.uk/teaching/course-notes/documents/76/1000-Jun2001.PDF

in q5, the second part of the question. How do we even start to do this? (it's the bit about finding the field if you assume that it's part of an infinitely large flat sheet of material)

my field from the first part of the question is

E(P)=\frac{1}{4 \pi \epsilon_0} \frac{qd}{a}

since dE_z=\frac{dq}{4 \pi \epsilon_0}{\vec{a} \cdot \vec{\hat{z}}}{a^3}=\frac{1}{4 \pi \epsilon_0} \frac{dq a \cos{\theta}}{a^3} then i canceled the a's and subbed \cos{\theta}=\frac{d}{a}
 
Physics news on Phys.org


I believe that problem concerning the infinite sheet means using a ring method of integration.

Each ring has charge C*2πr dr, and each ring contributes to the E-field at P.

For an infinite sheet, 0 < r < ∞
 


im a bit confused - does that mean i get the total charge by \int_0^{\infty} C 2 \pi r dr?
 


Yes, but one wishes to find E(P), so one must dE from all the infinitesimal rings for 0 to ∞. Note that as r -> ∞, the angle from the vertical axis to the line from P to the ring of charge.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top