How Can You Calculate the Expectation Value of Momentum in Quantum Mechanics?

kasse
Messages
383
Reaction score
1

Homework Statement



A particle is in a infinite square poteltian well between x=0 and x=a. Find <p> of a particle whose wave function is \psi(x) = \sqrt{\frac{2}{a}}sin\frac{n \pi x}{a} (the ground state).

2. The attempt at a solution

&lt;p&gt; = \frac{2 \hbar k}{\pi} \int^{a}_{0}sin^{2} \frac{\pi x}{a} dx = \frac{2 \hbar k }{\pi} \int^{\pi}_{0}sin^{2}u du = \hbar k = p

which certainly isn't the answer I wanted. The correct answer is 0. Where's my mistake?
 
Physics news on Phys.org
You get the wrong answer because you invented your own procedure to calculate <p>. Check your textbook for how to calculate the expectation value <A> of any operator A, in an arbitrary state psi.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top