MHB How do I convert from this mod number to a regular number?

  • Thread starter Thread starter SigmaS
  • Start date Start date
  • Tags Tags
    Convert Regular
AI Thread Summary
The discussion revolves around converting the expression $(\frac{1}{4900})^{100}$ into a regular number using modular arithmetic. The user initially simplifies $4900$ to $84 \ (\text{mod 112})$ and seeks to express the result in standard form. There is confusion regarding the application of modular arithmetic and the relevance of the modulus $112$. Alternative methods are suggested, including approximating the expression using logarithms, which leads to a more straightforward calculation. The conversation highlights the challenges of modular arithmetic in practical calculations and suggests logarithmic approaches as a viable alternative.
SigmaS
Messages
5
Reaction score
0
So I was working on solving $(\frac{1}{4900})^{100}$, and I figured the only way to do this neatly is through modular arithmetic.

I found that $4900 \equiv 84 \ (\text {mod 112})$, so I concluded $$\frac{1^{100}}{84^{10}\times84^{10} \ (\text{mod 112})}$$

Which should equal $$\frac{1}{3.06\times10^{38} \ (\text{mod 112})}$$

Now, this is still in mod form. How do I convert that value to a regular number, by mostly hand? When I tried converting it with the equation $n=qm+r$ where n is the number we wish to convert to, q is our quotient, m is the mod we're using, and r is the remainder; solving for n I got 84, but that doesn't sound right at all.
 
Last edited:
Mathematics news on Phys.org
Hi SigmaS,

What are you 'solving' exactly?
Are you trying to calculate $(4900^{-1})^{100}\pmod{112}$?
Or something else? If something else, where is the $112$ coming from?
 
Klaas van Aarsen said:
Hi SigmaS,

What are you 'solving' exactly?
Are you trying to calculate $(4900^{-1})^{100}\pmod{112}$?
Or something else? If something else, where is the $112$ coming from?

The 112 was just arbitrarily determined. I wanted to make $4900^{100}$ easy to calculate by hand. And I'm just trying to solve the probability of the problem, but expressed in much simpler terms.

if there's a better way to solve the original problem without modular arithmetic, then that would be great
 
How about:
$$4900^{100}\approx (\frac 12\cdot 10^4)^{100}=\frac 1{(2^{10})^{10}}\cdot 10^{400}
=\frac 1{(1024)^{10}}\cdot 10^{400}\approx \frac 1{10^{30}}\cdot 10^{400}=1\cdot10^{370}$$
? (Wondering)
 
Sixty years ago, this would have been an easy exercise in logarithms. $\log49 \approx 1.690196$, so $\log4900 \approx 3.690196$, and $\log(4900^{100}) \approx 369.0196$. Now take the antilog, to get $4900^{100}\approx 1.046\times 10^{369}.$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top