How do I correctly manipulate tensor components in different coordinate systems?

sweetdreams12
Messages
8
Reaction score
0

Homework Statement


A tensor and vector have components Tαβγ, and vα respectively in a coordinate system xμ. There is another coordinate system x'μ. Show that Tαβγvβ = Tαβγvβ

Homework Equations


umm not sure...

αvβ = ∂vβ/∂xα - Γγαβvγ

The Attempt at a Solution


Tαβγvβ = (∂xα/∂xi*∂xj/∂xβ*∂xγ/∂xk*Tijk)(∂xβ/∂xa*va)

Tαβγvβ = (∂xα/∂xi*∂xβ/∂xj*∂xγ/∂xk*Tijk)(∂xa/∂xβ*va)

and the two are not equal which they should be. I really don't know where I've went wrong...
 
Physics news on Phys.org
How do you relate Tijk with Tijk and va with va?
 
Orodruin said:
How do you relate Tijk with Tijk and va with va?

A previous part asked to express Tαβγ in terms of Tαβγ and I put my answer as ∂xα/∂xi*∂xβ/∂xj*∂xγ/∂xk*Tijj or by using the metric tensor

however does that also apply to vectors? if not, I don't know how vα relates to vα...

edit: wait is vα related to vα by vα = ∂xβ/∂xα*v'β?
 
Last edited:
You are confusing the concepts of how a vector transforms under coordinate transformations to how a contravariant tensor relates to a covariant one. A contravariant index can be turned into a covariant one by contraction with the metric. Covariant and contravariant indices transform differently under coordinate transformations.

A vector is a tensor of rank one and its indices therefore follow precisely the same rules as any tensor indices - what distinguishes a vector is that it only has one.
 
Orodruin said:
You are confusing the concepts of how a vector transforms under coordinate transformations to how a contravariant tensor relates to a covariant one. A contravariant index can be turned into a covariant one by contraction with the metric. Covariant and contravariant indices transform differently under coordinate transformations.

A vector is a tensor of rank one and its indices therefore follow precisely the same rules as any tensor indices - what distinguishes a vector is that it only has one.

Okay so if I take it one step at a time: expressing Tαβγ in terms of Tαβγ without taking into account the vector, I use the metric tensor. gαμ(Tμβγ) would then equal gγμ(Tαβμ) = Tαβγ. Is that right?
 
In order to raise a covariant index, you need to contract it with one of the contravariant indices in gij. In the same way, in order to lower a contravariant index, you need to contract it with one of the indices in gij. Remember that you cannot contract covariant indices with each other but must always contract a covariant index with a contravariant one and vice versa.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top