How do I find the Fourier Series for F(t) = sin(wt)?

physicspupil
Messages
9
Reaction score
0

Homework Statement



Consider F(t) = sin(wt) when 0 < t < pi/w and 0 when pi/w < t < 2pi/w. Where w is the frequency and t is the time. Find the Fourier Series

Homework Equations




F(t) = sum of (ck e^ikt)

See attached doc with math type; its a lot more readable.

The Attempt at a Solution




ck = (w/2pi integral from 0 to pi/w of sin(wt)*e^-ikx) + (w/2pi integral from pi/w to 2pi/w of sin(wt)*e^-ikx)

I’m not sure how to do this integration. If all the trig functions had the same argument, it would be do-able, but they don’t. w is a constant, right? And k isn’t, right? :confused: We never dealt with stuff like this back in calc. I’m very grateful for any help or suggestions. I tried to use trig addition formulas, but that didn’t work. Thanks! :smile:
 

Attachments

Physics news on Phys.org
Your integral is over t, not x, so it should have exp(-ikt).
Write sin(wt) as [exp(iwt)-exp(-iwt)]/2i, and do the exponential integrals.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top