How do I properly use Ricci calculus in this example?

jdbbou
Messages
4
Reaction score
0
upload_2016-7-19_15-25-43.png


Do I substitute A_\mu + \partial_\mu \lambda everywhere A_\mu appears, then expand out? Do I substitute a contravariant form of the substitution for A^\mu as well? (If so, do I use a metric to convert it first?)

I’m new to Ricci calculus; an explanation as to the meaning of raised and lowered indices here would be greatly appreciated. Everything I've found online so far has been (unnecessarily, I feel) complicated.
 
Physics news on Phys.org
This is what I've tried so far. Any suggestions? Was my justification for step (1) correct?

upload_2016-7-20_8-24-17.png
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top