How Do I Solve These Scattering Cross Section Problems?

Diracobama2181
Messages
70
Reaction score
3
Homework Statement
Suppose I am given the scattering cross section $$\sigma(\theta)=\alpha+\beta cos(\theta)+\gamma cos^2(theta)$$

a) Find the scattering amplitude.
b) Express α, β and γ in terms of the phase shifts δl
(c) Are there any constraints on the magnitudes of α, β and γ if the
scattering amplitude is not allowed to grow any faster than ln E as the
energy E becomes very large?
(d) Deduce the total scattering cross-section and show that it is consistent with the optical theorem.
Relevant Equations
$$\frac{d\sigma}{d \Omega}=|f(\theta)|^2$$
$$\sigma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$
a) I have $$d\sigma=-\beta sin(\theta)d(\theta)+2\gamma sin(\theta)cos(\theta) d\theta$$
and $$d \Omega=2\pi sin(\theta) d \theta$$
so $$\frac{d\sigma}{d \Omega}=-\frac{\beta}{2\pi}+2\gamma cos(\theta)=|f(\theta)|^2$$

b) $$\sigma(\theta)=\alpha+\beta cos(\theta)+\gamma cos^2(theta)=\sigma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$
Stuck here. Not sure if this is sufficient.

c) Also having issues with this one and deciding how to tackle it.

d) Waiting on doing this one until I can finish the previous two parts.

Has my setup so far been fine and are there any tips or suggestions on how I should tackle these problems?
Thanks in advance.
 
Physics news on Phys.org
I googled the topic, (my expertise here is limited), and I think you are needing the equation ## f(\theta)=\frac{1}{2 i k} \sum (2l+1) (e^{2 i \delta_l}-1)P_l(\cos{\theta}) ##. You can then set like powers of ## \cos{\theta} ## equal.
 
Last edited:
So, I talked with my professor, and apparently, there was a typo. It should be that $$\frac{d\sigma}{d\Omega}=\alpha+\beta cos(\theta)+\gamma cos^2(\theta)$$.
 
Charles Link said:
I googled the topic, (my expertise here is limited), and I think you are needing the equation ## f(\theta)=\frac{1}{2 i k} \sum (2l+1) (e^{2 i \delta_l}-1)P_l(\cos{\theta}) ##. You can then set like powers of ## \cos{\theta} ## equal.
I considered that, but I don't think that method would quite work since l is a summation to infinity.
 
Using this new info, I get for a) that ## f(\theta)=\frac{\sqrt{4\pi}}{k} \sum_{l=0}^{\infty} \sqrt{2l+1}Y_{l0} (e^{i\delta _l})sin^2{\delta_l} ##, where $$Y_{l0}$$ is a spherical harmonic.
For B, I can use $$\sigma=\int |f(\theta)|^2d\Omega=2\pi \int_{0}^{\pi}(\alpha+\beta cos(\theta)+\gamma cos^2(\theta))sin(\theta)d\Omega=4\pi\alpha+\frac{4\pi}{3}\gamma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$.
However, this gets rid of $$\beta$$. Also, still not sure where to go for C).
 
I don't understand how to do this. I believe you need to be given the scattering amplitude f(θ) explicitly to enable the rest of the problem. Perhaps that is the intent??
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top