How Do I Solve This 3D Trigonometry Problem?

  • Thread starter Thread starter skaboy607
  • Start date Start date
  • Tags Tags
    3d Trig
skaboy607
Messages
103
Reaction score
0
Hi

Not sure if this is simple or not but I can't figure out how to do it! I am designing a surround that will be constructed by folding a sheet of aluminum. I've got the geometry right in 3d but I want to transpose this to a template. Yes I can measure but I want to solve using maths for two reasons, one because I'm curious and can't do it and two, it will be more accurate.

One side is a mirror of the other, have just labelled for clarity. Distances A and C are the same when constructed (59). A I think will remain 59 but C I am not sure about? Distance B is unknown and what I would like to find, then I can just join a line between the two to obtain length C.

For the bottom triangles, distance D is known.

Let me know if other distances are needed and I will figure whether I know them or not?

Thanks

Will

Template-1.jpg


3d.jpg
 
Mathematics news on Phys.org
Can no one help on this? Am I missing some information?
 
Your pictures are too unclear.
 
Thanks for the response. Stuff always clear in your own head! Now that I know they are not understandable, I try to make them clearer. I have attached some images that will hopefully make it clear. From a perspective viewpoint, this is what I want to end up with.

Surround_exhaust.png


From the Side

Surround_exhaust_side.png


And from the top

Surround_exhaust_top-1.png


The angle (theta) in the side image has been calculated and is known. 7.6 deg.

I am making it out of a sheet of aluminum so I need to know dimensions in 2d so that they give me the desired shape in 2d. The 2d shape will be folded to give the 3d one.

In 2d, I don't know the angles phi and tau from this image.

Surround_exhaust_template.png
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top