How do I solve this challenging trigonometric integral?

  • Thread starter Thread starter cuttlefish
  • Start date Start date
  • Tags Tags
    Integral Trig
cuttlefish
Messages
12
Reaction score
0

Homework Statement


\int \frac{3cosx-10sinx}{10cosx+3sinx} from -pi/3 to pi/3


Homework Equations


some sort of identity maybe?


The Attempt at a Solution


well...I made the mistake of saying the answer was zero since it's an odd function (yes, i know this is ridiculously not right) and so incurred the wrath of my calculus teacher. if someone can help me get started on this then maybe I can salvage something resembling a grade.
 
Physics news on Phys.org
you could try writing
10 = A.cos(\alpha)
3 = A.sin(\alpha)

for unknown A & alpha, plug this into your equation then make use of some tirg identities for angle sums...
maybe not that exactly... but something along those lines has a good chance of working
 
cuttlefish said:

Homework Statement


\int \frac{3cosx-10sinx}{10cosx+3sinx} from -pi/3 to pi/3


Homework Equations


some sort of identity maybe?


The Attempt at a Solution


well...I made the mistake of saying the answer was zero since it's an odd function (yes, i know this is ridiculously not right) and so incurred the wrath of my calculus teacher. if someone can help me get started on this then maybe I can salvage something resembling a grade.

lanedance had the start of this idea. Let's see if I can finish it off. First off, notice that the same two numbers appear: 3 and 10. If you square them, add them, and take the square root, you get sqrt(109). This will enter into things in a little while.

1. For the numerator, you have 3cos(x) - 10 sin(x). If this were sinA*cosx - cosA * sinx, you could rewrite this as sin(A - x).

2. Simililarly, you have 10cos(x) + 3sin(x) in the denominator. If this were cosA*cos(x) + sinA*sin(x), you could rewrite it as cos(A - x).

The trouble is, there is no A for which cosA = 10 or for which sinA = 3. This is where sqrt(109) comes in. Multiply the numerator and denominator of your integrand by 1 in the form of (1/sqrt(109))/(1/sqrt(109)).

The numerator now looks like 3/sqrt(109) * cos(x) - 10/sqrt(109)* sin(x). The denominator now looks like 10/sqrt(109) * cos(x) + 3/sqrt(109) * sin(x). So sinA = 3/sqrt(109) and cosA = 10/sqrt(109), and these should hold for both the numerator and denominator.

With this work, you can rewrite the integrand as sin(A - x)/cos(A - x), which is tan(A - x), which is easy enough to integrate. You'll need to find A, of course, which can be done by using the appropriate inverse functions in either sinA = 3/sqrt(109) or cosA = 10/sqrt(109).
 
wow, thanks you guys. this is definitely something that I never would have done. we spent like two seconds on product sum rules and I didn't really understand that they could be used like this. i'll need to write this down and stare at it for a couple minutes but thanks! I sense a passing grade in my future.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top