Amrator
- 246
- 83
Homework Statement
##\nabla U = 2 r^4 \vec r## Find U.
Homework Equations
##\vec r = x \hat i + y \hat j + z \hat j##
##r = \sqrt (x^2 + y^2 + z^2)##
The Attempt at a Solution
##\nabla U = 2 (x^2 + y^2 + z^2)^2 (x \hat i + y \hat j + z \hat j)##
I multiplied everything out,
##\nabla U = (2 x^4 + 4 x^2 y^2 + 4 x^2 z^2 + 4 y^2 z^2 + 2 y^4 + 2 z^4)x\hat i + (2 x^4 + 4 x^2 y^2 + 4 x^2 z^2 + 4 y^2 z^2 + 2 y^4 + 2 z^4)y\hat j + (2 x^4 + 4 x^2 y^2 + 4 x^2 z^2 + 4 y^2 z^2 + 2 y^4 + 2 z^4)z\hat k##
Since ##\nabla U = \frac{\partial U}{\partial x} \hat i + \frac{\partial U}{\partial y} \hat j + \frac{\partial U}{\partial z} \hat k##, we really only need one of the partial derivatives.
##\frac{\partial U}{\partial x} = (2 x^5 + 4 x^3 y^2 + 4 x^3 z^2 + 4 x y^2 z^2 + 2 x y^4 + 2 x z^4)##
Then I took the integral of only the x terms,
##\frac{\partial U}{\partial x} = \frac{\partial}{\partial x} (\frac {x^6}{3} + x^4 y^2 + x^4 z^2 + 2 x^2 y^2 z^2 + x^2 y^4 + x^2 z^4)##
Therefore,
##U = \frac {x^6}{3} + x^4 y^2 + x^4 z^2 + 2 x^2 y^2 z^2 + x^2 y^4 + x^2 z^4##
Am I correct so far? If so, where do I go from here?
Last edited: