How do they come from F to the area? (formula example)

  • Thread starter Thread starter discy
  • Start date Start date
  • Tags Tags
    Area Example
discy
Messages
14
Reaction score
0
/close
 

Attachments

  • Untitled.png
    Untitled.png
    8.1 KB · Views: 486
Last edited:
Physics news on Phys.org
It's just F(top number) - F(bottom number) if F(x) = -x^3/3+x^2+3x, what is F(0)-F(-1)?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top