How Do You Calculate Static Pressure Drop in a Laminar Flow Channel?

AI Thread Summary
To calculate the static pressure drop in a laminar flow channel, one must consider the flow as steady state, incompressible, and fully developed. The channel geometry and fluid properties are essential, with the inlet velocity already determined. The solution involves using the Navier-Stokes equations, which may require numerical methods for complex geometries. For a simplified case, the pressure drop can be estimated using the Darcy friction factor and the Moody diagram, particularly for flow between parallel plates. Understanding these principles is crucial for accurately determining the pressure drop across the channel.
Darcy30
Messages
1
Reaction score
1
Hallo. Since I'm new in this field, I hope someone can help me.
I have a laminar, steady state, incompressible flow in a channel (a fully developed).
Geometry of the channel is on the photo.
How should I calculate the drop of static pressure across the channel?
Since I have Re, I did calculate a inlet velocity, but now I'm stuck.
Thanks
 

Attachments

  • channel.png
    channel.png
    2.7 KB · Views: 234
Engineering news on Phys.org
To do this, you need to solve the Naiver Stokes equations, probably numerically. To get a lower bound to the pressure drop, you can at least solve analytically for the case where you remove the constriction and have rectilinear flow between parallel plates.
 
Hi Darcy30,

Was it intentional that your username would hint at the solution?

I understand the problem as follows:
  • Assume laminar, steady state, constant density (incompressible), fully developed flow.
  • Channel Geometry and Fluid Properties are known (I will assume the channel is circular)
  • The inlet velocity is known
Goal:
  • Find the pressure drop across a channel.
Solution Hint:
Darcy Friction Factor, Moody Diagram

Solution:

The pressure drop down a pipe is related to the friction factor.
For Laminar flow,
$$ f_D = \frac{64}{Re} $$
If not, then you will need to assume smooth walls or know the surface roughness.

The pressure drop is related to the following.
$$ dP = f_D * \frac{\rho*V^2*L}{2*D} $$
Break the problem into 3 sections. Inlet straight pipe, the circular restriction, and the outlet straight pipe. The inlet and outlet is straight forward. You will add up the dP for each section to find your answer.

The tricky part of this problem is that you need to integrate the friction factor (hence pressure drop) over the circular restriction. You need a formula for the relationship of Pipe Diameter, D, to length across the channel, x. Something like this:
$$ Dtube = 2 * R - R*sin(acos(R/x)) $$
Additionally, the velocity changes based on cross-sectional area. Use the conservation of mass to find that
$$ mdot = \rho*Area*Velocity $$
There is symmetry, so we only need to consider a 1/4 circle and multiply the friction factor by 2. Integrate from x = 0 to R. Or solve it numerically in a spreadsheet program with small steps of x.

PS: If the channel is indeed non-circular, then use the hydraulic diameter Dh in place of D.
$$ Dh = \frac {4*Area}{Perimeter} $$



References:
[1] Moody Diagram https://en.wikipedia.org/wiki/Moody_chart?msclkid=7b62d23aaee911ec823e165de974644a
[2] Hydraulic Diameter https://en.wikipedia.org/wiki/Hydraulic_diameter?msclkid=0899a52baef711ec890e442c37cca7b6
 
What is the exact statement of the problem?
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top