How Do You Calculate the Expected Value Using Poisson Distribution?

catsonmars
Messages
7
Reaction score
0

Homework Statement


Use the Poisson distribution W=(λ^n/n!)*e^-λ to calculate <n>


Homework Equations


<n>=ƩW*n



The Attempt at a Solution


Since W = (λ^n/n!)*e^-λ I wind up with <n>=[(λ^n/n!)*e^-λ]*n
But I really don't know where to go from here. Should I do a Taylor Series. I've tried crossing out the top n and ended up with


[(λ^n/(n-1)!)*e^-λ] but this doesn't seem to help. If anyone can point me in the right direction or a general problem solving strategy that would be great. I'd like to demonstrate more work but I don't know what to do.
 
Physics news on Phys.org
Evaluate the generating function
Z(x)=\sum_{n=0}^{\infty} W(n) \exp(-n x).
Then you can get expectation values by taking derivatives of this function wrt. x :-).
 
catsonmars said:

Homework Statement


Use the Poisson distribution W=(λ^n/n!)*e^-λ to calculate <n>


Homework Equations


<n>=ƩW*n



The Attempt at a Solution


Since W = (λ^n/n!)*e^-λ I wind up with <n>=[(λ^n/n!)*e^-λ]*n
But I really don't know where to go from here. Should I do a Taylor Series. I've tried crossing out the top n and ended up with


[(λ^n/(n-1)!)*e^-λ] but this doesn't seem to help. If anyone can point me in the right direction or a general problem solving strategy that would be great. I'd like to demonstrate more work but I don't know what to do.
You need the summation.
$$\langle n \rangle = \sum_{n=0}^\infty \frac{\lambda^n}{n!} e^{-\lambda} n = \sum_{n=1}^\infty \frac{\lambda^n}{(n-1)!} e^{-\lambda}$$ Note that the lower limit changed from n=0 to n=1, since the n=0 term is 0. You just need to recognize that ##e^{-\lambda}## is a constant, so you can factor it out of the summation. Similarly, try pulling one factor of ##\lambda## out so that the exponent of ##\lambda## inside the summation matches up with the factorial.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top