Archived How Do You Calculate the Wavelength of an Electron with 1keV Kinetic Energy?

AI Thread Summary
To calculate the wavelength of an electron with 1 keV kinetic energy, the de Broglie wavelength formula (λ = h/p) is used, where p is the momentum. The momentum can be derived from the kinetic energy using the relationship T = p²/(2m), leading to p ≈ 17.064 x 10^-24 kg m/s. This results in a de Broglie wavelength of approximately 0.039 nm, confirming that 1 keV is non-relativistic for electrons. Alternatively, a relativistic approach using E² = m²c⁴ + p²c² yields a similar wavelength, demonstrating the consistency of both methods.
ZedCar
Messages
353
Reaction score
1

Homework Statement





Homework Equations



de Broglie wavelength λ = h/p
E^2 = p^2 c^2 + (m0)^2 c^4
L-compton = (h-bar) / mc


The Attempt at a Solution



I'm trying to work out the wavelength of an electron with a kinetic energy of 1keV

So I intend on using
de Broglie wavelength λ = h/p

and

Relativistic mass equation
E^2 = p^2 c^2 + (m0)^2 c^4

then inputting the rest mass energy of an electron (511 keV) into the formula above. Though do I need to convert this first to kg?

Also, I'd still be left with two unknowns in mass eqn i.e. E and p, so how do I obtain the value for E?

Or should I instead be using the Compton wavelength formula i.e.

L-compton = (h-bar) / mc

The question just asks for the wavelength.
 
Physics news on Phys.org
ZedCar said:
I'm trying to work out the wavelength of an electron with a kinetic energy of 1keV

The relationship between kinetic energy - momentum for a free electron is ##T = \frac{p^{2}}{2m}##. So, from this, we can find the momentum ##p##:

##p = \sqrt{2mT} = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 10^{3}\frac{kg^{2} m^{2}}{s^{2}}} \approx 17.064 \times 10^{-24} \frac{kg m}{s} ##

Now, we can find the De Broglie wavelength: ##\lambda = \frac{h}{p} = \frac{6.625 \times 10^{-34}}{17.064 \times 10^{-24}} m\approx 0.039 nm##
 
Last edited:
QuantumQuest said:
The relationship between kinetic energy - momentum for a free electron is ##T = \frac{p^{2}}{2m}##. So, from this, we can find the momentum ##p##:

##p = \sqrt{2mT} = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 10^{3}\frac{kg^{2} m^{2}}{s^{2}}} \approx 17.064 \times 10^{-24} \frac{kg m}{s} ##

Now, we can find the De Broglie wavelength: ##\lambda = \frac{h}{p} = \frac{6.625 \times 10^{-34}}{17.064 \times 10^{-24}} m\approx 0.039 nm##

This result is correct, because 1keV is non-relativistic for electrons, since electron rest mass is around 500keV.

On the other hand one can solve this exercise using the equation OP wanted to use: E² = m²c⁴ + p²c²

He said the energy (meaning the kinetic energy) of the electron is one keV. Thus 1keV = E - mc² = ##\sqrt{m²c⁴ + p²c²} -mc²##. If OP solves this equation, then OP can insert it in the De Broglie wavelength formula:

$$p² = \frac{1}{c²}(1keV + mc²)² - m²c² => p = \sqrt{ \frac{1}{c²}(1keV + mc²)² - m²c² } \approx 1.70933440*10^{-23}kg \frac{m}{s}$$

And so ##\lambda = h/p \approx 0.038764033nm##

Both results, of course, agree

EDIT: Not trying to be pedant, but because I want to emphasize the minute differences between both methods I will recalculate what QuantumQuest already did, but with higher precision:

non-relativistic:

##p \approx 1.70849875*10^{-23}kg \frac{m}{s} \approx 31.9687keV/c##
##\lambda = h/p \approx 0.038782993nm##

relativistic:

##p \approx 1.70933440*10^{-23}kg \frac{m}{s} \approx 31.98434keV/c##
##\lambda = h/p \approx 0.038764033nm##
 
Last edited:
Making my point about the minuteness of the corrections more thorough:

##p_{rel} = \sqrt{ \frac{1}{c²}(T + mc²)² - m²c² } = \sqrt{T²/c²+2Tm+m²c²-m²c²} = \sqrt{T²/c²+2Tm} = \sqrt{T}\sqrt{T/c²+2m}##
##p_{non-rel} = \sqrt{2Tm} = \sqrt{T}\sqrt{2m}##

Thus ##\frac{p_{rel}}{p_{non-rel}} = \sqrt{ frac{T/c² + 2m}{2m}} = \sqrt{\frac{T}{2mc²} + 1}##
And so ##\frac{p_{relativistic}}{p_{non-relativistic}}(x) = \sqrt{\frac{x}{2}+1}## where ##x = \frac{T}{mc²}##

This formula holds true for any massive particle.

In our case ##x \approx 1/500## and so the above formula is essentially one.
This is a good way to see when you can use non-relativistic approximations. Basically as long as your kinetic energies are much smaller than your rest mass energies, you are safe:

$$ T << mc² $$
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top