How Do You Calculate Vector Magnitudes and Directions from Given Angles?

AI Thread Summary
To calculate the resultant vectors A + B + C, A - B + C, and 2(A + C) from given angles, the vectors were broken down into x and y components. The calculations showed that A + B + C results in a magnitude of 15.8 units pointing downward at an angle of 270 degrees. The method of using vector components is effective, but it's also suggested to sketch the vectors for better visualization and verification of results. The discussion emphasizes the importance of checking answers and considering alternative geometric methods for efficiency. Overall, the approach to vector addition and the resultant calculations were validated, though some angles and signs were initially miscalculated.
mahadasgar
Messages
2
Reaction score
0

Homework Statement



Three vectors, A, B and C each have a magnitude of 50 units. Their
directions relative to the positive direction of the x-axis are 20°, 160° and
270°, respectively. Calculate the magnitude and direction of each of the
following vectors.

1.) A + B + C
2.) A-B+C
3.) 2(A+C)


Homework Equations




a^2 + B^2=C^2

The Attempt at a Solution




1.)

Vector A
Ax=50cos20=46.985
Ay=50sin20=17.101
Vector B
-Bx=50cos20=-46.985
By=50sin20=17.101
Vector C
Cx=0
Cy=-50

Ax+Bx+Cx=46.985+(-46.985)+0=0
Ay+By+Cy=17.101+17.101+(-50)=-15.798

0^2 +(-15.798)^2=c^2
c=15.798

tan^-1= 0 degrees

2.
Ax-Bx+Cx=46.985+(--(makes positive) 46.985) + 0=93.97
Ay-By+Cy=17.101+(-17.101)+(-50)=-50

(-50)^2+(93.97)^2=106.444

tan^-1=-50/93.97=28.02 degrees below x axis

3.

2(Ax+Cx)=2(46.985+0)=93.97
2(Ay+Cy)=2(17.101+(-50))=-65.798

(-65.798)^2+(93.97)^2=c^2
C=114.72

tan^-1(-65.798/93.97)
=35.0 degrees below x axis

Did I do this correct?
 
Physics news on Phys.org
You chose to break the vectors down into components in the x and y directions, added the components to get the resultant vector then found the magnitude and angle from that. This is a solid approach.

You should get used to checking your own answers - you gain confidence that way.
The best way to check if you got this right is to sketch out the vectors on some axis.
Compare the directions and relative sizes of components in your sketch with the ones you calculated.
Compare the final angles with the final angle in the sketch (it is common for the calculator to give angles in the 1st quadrant only).

Note: since all the vectors are the same length and the angles are fairly nice, the different combinations should give fairly easy shapes - you could have used geometry instead. The method you chose is very popular for students because it can be done almost automatically - for this reason, it is common for problems to be set that are actually faster to do by some other method - thus rewarding students who think outside the box.

i.e. A+B should end up pointing in the +y direction - so A+B+C will point in the -y direction with length < 50 units. If you drew it out first, you could have just written down |A+B+C|=50-100sin(20), angle=270deg right away. i.e. for number 1 you got the sign and the angle wrong.
 
I am still slightly confused... How did you come to get the angle and sign on number 1?


Simon Bridge said:
You chose to break the vectors down into components in the x and y directions, added the components to get the resultant vector then found the magnitude and angle from that. This is a solid approach.


You should get used to checking your own answers - you gain confidence that way.
The best way to check if you got this right is to sketch out the vectors on some axis.
Compare the directions and relative sizes of components in your sketch with the ones you calculated.
Compare the final angles with the final angle in the sketch (it is common for the calculator to give angles in the 1st quadrant only).

Note: since all the vectors are the same length and the angles are fairly nice, the different combinations should give fairly easy shapes - you could have used geometry instead. The method you chose is very popular for students because it can be done almost automatically - for this reason, it is common for problems to be set that are actually faster to do by some other method - thus rewarding students who think outside the box.

i.e. A+B should end up pointing in the +y direction - so A+B+C will point in the -y direction with length < 50 units. If you drew it out first, you could have just written down |A+B+C|=50-100sin(20), angle=270deg right away. i.e. for number 1 you got the sign and the angle wrong.
 
I drew the diagram and then used geometry.
You should do the same.

To do A+B - draw them head-to-tail
A is 20deg anticlockwise from the +x axis.
B is 20deg clockwise from the -x axis.
They have the same length of 50 units, so they have equal but opposite x components and the same y component. So when you add them together, the x components will cancel out.

Thus, the resultant of A+B must point straight up - A+B is 100sin(20) units long pointing along the +y axis.

C is 50 units long pointing straight down along the -y axis.

|A+B+C| is |A+B|=100sin(20) units upwards, plus |C|=50 units downwards, which is a net 50-100sin(20) units downwards. That's length and angle.
 
Last edited:
Simon Bridge said:
I drew the diagram and then used geometry.
You should do the same.

To do A+B - draw them head-to-tail
A is 20deg anticlockwise from the +x axis.
B is 20deg clockwise from the -x axis.
They have the same length of 50 units, so they have equal but opposite x components and the same y component. So when you add them together, the x components will cancel out.

Thus, the resultant of A+B must point straight up - A+B is 100sin(20) units long pointing along the +y axis.

C is 50 units long pointing straight down along the -y axis.

|A+B+C| is |A+B|=100sin(20) units upwards, plus |C|=50 units downwards, which is a net 50-100sin(20) units downwards. That's length and angle.

Hello Mr. Bridge,

thank you for your assistance with this problem

When I draw everything out the resultant of A + B + C is 15.8 pointing in the downward direction. The angle that I observe from my drawing is 270 degrees. is this correct?

thank you in advance!

Ab
 
MD777 said:
Hello Mr. Bridge,

thank you for your assistance with this problem

When I draw everything out the resultant of A + B + C is 15.8 pointing in the downward direction. The angle that I observe from my drawing is 270 degrees. is this correct?

thank you in advance!

Ab
This is correct but next time you need to create a new thread of your own if you have questions. (This thread is over 2 years old.)
 
  • Like
Likes MD777
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top