How Do You Derive a Vector Function for Taylor Series Expansion?

alnoy
Messages
2
Reaction score
0
Hey,
Can somebody help me on this one. I feel out of my depth and have to solve it somehow.

I have a variable vector v=[v1 v2]T, a constant vector vc = [vc1 vc2]T, a scalar variable d and a vector function:

s= d/(Vs/V-1)

I need the first derivative ds/dv at a point of the mean of v to use in Taylor series expansion.

Any sugestions
 
Last edited by a moderator:
Physics news on Phys.org
alnoy said:
Hey,
Can somebody help me on this one. I feel out of my depth and have to solve it somehow.

I have a variable vector v=[v1 v2]T, a constant vector vc = [vc1 vc2]T, a scalar variable d and a vector function:

s= d/(Vs/V-1)
I don't understand what this means. It looks like you are dividing vectors.

I need the first derivative ds/dv at a point of the mean of v to use in Taylor series expansion.

Any sugestions
What is "the mean of v"?
s maps v, in R2, to what? What space is s(v) in?
 
I will explain a bit more hope it clarifies the problem,

Everything is in x,y (euclidian space), v and vc are speeds of two bodies,i.e v1, vc1 are the x components and v2,vc2 are y components. d is some distance.
from the Kalman filter that tracks the body the spead is estimated as v but also has uncertainty. The uncertainty is given by the 2x2 variance-covariance matrix Pv.

s gives the error(distortion) in the seen image when measured with a certain sensor.
I want to know the var to be able to deside whether the image that the sensor prodices comes from a certain shape or not (with certain probability).

Var[S(v)], can be approximated through the delta method (Oehlert 1992) that uses second-order Taylor expansion in matrix form which calls for the expected value of v E(v) so I assumed that this is the mean (but maybe I am wrong in this)

Var[S(V)]≈S' (E[V])Var[V](S' (E[V]))T
*******************************

http://en.wikipedia.org/wiki/Delta_method

Oehlert, G.W., 1992. A Note on the Delta Method. American Statistician, 46(1), pp.27–29. Available at: http://www.jstor.org/stable/2684406?origin=crossref.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top