decerto
- 84
- 2
Homework Statement
The equation of state for a rubber band with temperature T is \mathcal{F}=aT\left[\frac{L}{L_0}-\left(\frac{L_0}{L}\right)^2\right]
Where \mathcal{F} is the tension, L is the stretched length and L_0 is the unstretched length
a) Write the Central Equation for the rubber band
b) Derive the energy equation for the rubber band \left(\frac{\partial U}{\partial L}\right)_T
c) Show that U is a function of T only
Homework Equations
dU=dQ+dW
dU=\left(\frac{\partial U}{\partial T}\right)_LdT +\left(\frac{\partial U}{\partial L}\right)_TdL
The Attempt at a Solution
a) For the central equation some variant of dU=TdS+\mathcal{F}dL I pressume?
b) Comparing the two relevant equations \left(\frac{\partial U}{\partial L}\right)_T=\mathcal{F} ?
c)No real idea how to show this