How Do You Derive the Lagrangian for a Circuit with Repeated Cells?

T-7
Messages
62
Reaction score
0
Hello folks,

I could really do with a few hints with this. (As soon as possible!)

Homework Statement



For a repeated line of cells, two 'equations of motion' can be written:

C_{n}\dot{U_{n+1}} = I_{n}-I_{n+1}
L_{n}\dot{I_{n}} = U_{n} - U_{n+1}

where C_{n} is the capacitance, U_{n+1} the voltage after the nth cell, I_{n}-I_{n+1} the charging current, L_{n} the inductance.

Work out the Lagrangian that generated these equations.

You should find that

E = \sum_{n}\left( (1/2)\L_{n}\dot{Q_{n}}^{2} + (1/2)C_{n}U_{n+1}^{2} \right)

and

H = (1/2)\sum_{n}\left( \frac{P_{n}^{2}}{L_n}} + \frac{(Q_{n+1}-Q_{n})^{2}}{C_{n}} \right)

Homework Equations



Note that
Q_{n} = -\int I_{n} dt => C_{n}U_{n+1} = Q_{n+1} - Q_{n}

The Attempt at a Solution



I have suggested a Lagrangian of

L = (1/2)L_{n}\dot{Q_{n}}^{2} + Q_{n}(U_{n+1}-U_{n}) + (1/2)C_{n}\dot{U_{n+1}^{2}} + U_{n+1}(I_{n}-I_{n+1})

(which can be turned into a sum for all the repeated circuits)

but it doesn't seem convincing, despite the fact that you can recover the original 'equations of motion' using Euler-Lagrange equations (using Q and U).

I'm not sure how the energy is being derived from the Lag. in this case (in mechanics, it was always the case that L = T - U, hence E = T + U), and it seems clear that you aren't going to get either that expression for the energy or that Hamiltonian from my guess-work Lagrangian.

Any suggestions?

Many thanks!
 
Physics news on Phys.org
I don't think Ulf would like this any more than Chris.
 
Anony-mouse said:
I don't think Ulf would like this any more than Chris.

What?
 
malawi_glenn said:
What?

I think Anony. is under the impression that, being part of a set Q, this isn't up for discussion. According to the tutor I asked, we *can* discuss these Qs with other Physicists, exchange ideas, argue, etc. What we're not allowed to do is just copy someone's answer (which PhysicsForums also prohibits).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top