How Do You Determine the Correct Wave Function in a Quantum Square Well?

serverxeon
Messages
100
Reaction score
0

Homework Statement



Assume a free particle, V=0, in a infinite potential square well between -L/2 and L/2
solve for the wave function for this particle.

Homework Equations



Time independent schrodinger equation

The Attempt at a Solution



After arriving at the second order differential equation, I get a general solution of
ψ=Acos(kx) + Bsin(kx)

How do I go on to solve for A, B and k?

I've plugged in the boundary conditions, but the solution is still quite indeterminate.

I have to assume A=0, then ψ=Bsin(2n∏x/L)
however, if I assume B=0, I get ψ=Acos([2n+1]∏x/L)

which is correct?
I do need to pick one before going onto normalising right?
 
Physics news on Phys.org
serverxeon said:
I've plugged in the boundary conditions, but the solution is still quite indeterminate.

I have to assume A=0, then ψ=Bsin(2n∏x/L)
however, if I assume B=0, I get ψ=Acos([2n+1]∏x/L)

which is correct?
Can you find a trigonometric relation between these two solutions?
 
You can rewrite the solution to ψ=Aexp(ik)+Bexp(-ik) (k=2pi/λ)

when x→+∞,ψ=0.so A=0.
when x→-∞,ψ=0, so B=0

that means ψ is a segmented function.

your solution is right,and hope my answer can help you to comprenhen it in other way.
 
er, nope.
some pointers pls?
 
YOUGI said:
You can rewrite the solution to ψ=Aexp(ik)+Bexp(-ik) (k=2pi/λ)

when x→+∞,ψ=0.so A=0.
when x→-∞,ψ=0, so B=0
The wave function is limited to the range -L/2, L/2 because of the infinite wall.
 
serverxeon said:
er, nope.
some pointers pls?
$$\cos(x + \pi/2) = -\sin(x)$$
Your two solutions are the same
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top