How Do You Integrate ∫(1/sqrt(1-(2/x)-((x^2)/3)))dx?

  • Thread starter Thread starter Nilupa
  • Start date Start date
  • Tags Tags
    Functions
Nilupa
Messages
18
Reaction score
0
Please help me to find this integral.

∫(1/sqrt(1-(2/x)-((x^2)/3)))dx
 
Physics news on Phys.org
Hey Nilupa and welcome to the forums.

Try multiplying the integral by x/x and factor out the denominators with x in it (i.e. get rid of the 2/x term and make all terms in the square root positive powers of x).
 
chiro said:
Hey Nilupa and welcome to the forums.

Try multiplying the integral by x/x and factor out the denominators with x in it (i.e. get rid of the 2/x term and make all terms in the square root positive powers of x).

Thank you,, I did that. but,it is still impossible...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top