lurflurf said:
The integral does not converge in the traditional sense, but for particular applications assign a useful value using limits.
for example
$$\int_{-\infty}^{z} \sin(2 k t) \, dt \\
=\lim_{s\rightarrow 0^+}\int_{-\infty}^{z} \sin(2 k t) e^{s t}\, dt$$
##\int_{-\infty}^{z} sin(2kt) \, dt =\lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z} sin(2kt)e^{st} \, dt }##
Now , by using integration by parts:
let ##du=sin(2kt) \rightarrow u=\dfrac{-1}{2k}cos(2kt)##
## \quad v=e^{st} \rightarrow dv=se^{st}##
##\Longrightarrow \lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z} sin(2kt)e^{st} \, dt }=\lim_{ s \rightarrow 0^+}{\Big [-\dfrac{1}{2k}cos(2kt)e^{st} \Big ]_{-\infty}^{z}}+\lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z}\dfrac{s}{2k}cos(2kz)e^{st} \, dt} ##
##= \lim_{ s \rightarrow 0+}{\dfrac{1}{2k}cos(2kz)e^{sz}} +\lim_{ s \rightarrow 0^+}{\dfrac{1}{2k}cos(2k\infty)e^{-\infty}}+\lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z}\dfrac{s}{2k}cos(2kz)e^{st} \, dt} ##
##=\lim_{ s \rightarrow 0^+}{\dfrac{1}{2k}cos(2kz)e^{sz}}+\lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z}\dfrac{s}{2k}cos(2kz)e^{st} \, dt}##Now,##\lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z}\dfrac{s}{2k}cos(2kz)e^{st} \, dt}=\lim_{ s \rightarrow 0^+}{\dfrac{s}{2k} \Big [ \dfrac{1}{2k}sin(2kt)e^{st} \Big ]_{-\infty}^{z}}+\lim_{ s \rightarrow 0^+} {-\dfrac{s^2}{(2k)^2}\int_{-\infty}^{z} sin(2kz)e^{st} \, dt}##
##=\lim_{ s \rightarrow 0^+}{\dfrac{s}{(2k)^2}sin(2kz)e^{sz}}+\lim_{ s \rightarrow 0^+} {-\dfrac{s^2}{(2k)^2}\int_{-\infty}^{z} sin(2kz)e^{st} \, dt}=\lim_{ s \rightarrow 0^+} {-\dfrac{s^2}{(2k)^2}\int_{-\infty}^{z} sin(2kz)e^{st} \, dt}##
##\Longrightarrow \lim_{ s \rightarrow 0^+}{\int_{-\infty}^{z} sin(2kt)e^{st} \, dt \Big(1+\dfrac{s^2}{(2k)^2} \Big)}=-\lim_{ s \rightarrow 0^+}{\dfrac{1}{2k}cos(2kz)e^{sz}}##
##\Longrightarrow \int_{-\infty}^{z} sin(2kt) \, dt=-\dfrac{1}{2k}cos(2kz)##
Is my answer right?